skip to main content


Title: Impact of gas-based seeding on supermassive black hole populations at z ≥ 7
Abstract Deciphering the formation of supermassive black holes (SMBHs) is a key science goal for upcoming observational facilities. In many theoretical channels proposed so far, the seed formation depends crucially on local gas conditions. We systematically characterize the impact of a range of gas-based black hole seeding prescriptions on SMBH populations using cosmological simulations. Seeds of mass Mseed ∼ 103–106 M⊙ h−1 are placed in haloes that exceed critical thresholds for star-forming, metal-poor gas mass and halo mass (defined as $\tilde{M}_{\mathrm{sf,mp}}$ and $\tilde{M}_{\mathrm{h}}$, respectively, in units of Mseed). We quantify the impact of these parameters on the properties of z ≥ 7 SMBHs. Lower seed masses produce higher black hole merger rates (by factors of ∼10 and ∼1000 at z ∼ 7 and z ∼ 15, respectively). For fixed seed mass, we find that $\tilde{M}_{\mathrm{h}}$ has the strongest impact on the black hole population at high redshift (z ≳ 15, where a factor of 10 increase in $\tilde{M}_{\mathrm{h}}$ suppresses merger rates by ≳ 100). At lower redshift (z ≲ 15), we find that $\tilde{M}_{\mathrm{sf,mp}}$ has a larger impact on the black hole population. Increasing $\tilde{M}_{\mathrm{sf,mp}}$ from 5–150 suppresses the merger rates by factors of ∼8 at z ∼ 7–15. This suggests that the seeding criteria explored here could leave distinct imprints on LISA merger rates. In contrast, AGN luminosity functions are much less sensitive to seeding criteria, varying by factors ≲ 2 − 3 within our models. Such variations will be challenging to probe even with future sensitive instruments such as Lynx or JWST. Our study provides a useful benchmark for development of seed models for large-volume cosmological simulations.  more » « less
Award ID(s):
1909933 1909831 2007355 2008490 1910209
NSF-PAR ID:
10285756
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
ISSN:
0035-8711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We explore implications of a range of black hole (BH) seeding prescriptions on the formation of the brightest $z$ ≳ 6 quasars in cosmological hydrodynamic simulations. The underlying galaxy formation model is the same as in the IllustrisTNG simulations. Using constrained initial conditions, we study the growth of BHs in rare overdense regions (forming $\gtrsim 10^{12}\, {\rm M}_{\odot }\,h^{-1}$ haloes by $z$ = 7) using a  (9 Mpc h−1)3 simulated volume. BH growth is maximal within haloes that are compact and have a low tidal field. For these haloes, we consider an array of gas-based seeding prescriptions wherein $M_{\mathrm{seed}}=10^4\!-\!10^6\, {\rm M}_{\odot }\,h^{-1}$ seeds are inserted in haloes above critical thresholds for halo mass and dense, metal-poor gas mass (defined as $\tilde{M}_{\mathrm{h}}$ and $\tilde{M}_{\mathrm{sf,mp}}$, respectively, in units of Mseed). We find that a seed model with $\tilde{M}_{\mathrm{sf,mp}}=5$ and $\tilde{M}_{\mathrm{h}}=3000$ successfully produces a $z$ ∼ 6 quasar with $\sim 10^9\, {\rm M}_{\odot }$ mass and ∼1047 erg s−1 luminosity. BH mergers play a crucial role at $z$ ≳ 9, causing an early boost in BH mass at a time when accretion-driven BH growth is negligible. With more stringent seeding conditions (e.g. $\tilde{M}_{\mathrm{sf,mp}}=1000$), the relative paucity of BH seeds results in a much lower merger rate. In this case, $z$ ≳ 6 quasars can only be formed if we enhance the maximum allowed BH accretion rates (by factors ≳10) compared to the accretion model used in IllustrisTNG. This can be achieved either by allowing for super-Eddington accretion, or by reducing the radiative efficiency. Our results demonstrate that progenitors of $z$ ∼ 6 quasars have distinct BH merger histories for different seeding models, which will be distinguishable with Laser Interferometer Space Antenna observations.

     
    more » « less
  2. ABSTRACT

    Direct collapse black holes (BHs) are promising candidates for producing massive z ≳ 6 quasars, but their formation requires fine-tuned conditions. In this work, we use cosmological zoom simulations to study systematically the impact of requiring: (1) low gas angular momentum (spin), and (2) a minimum incident Lyman–Werner (LW) flux in order to form BH seeds. We probe the formation of seeds (with initial masses of $M_{\rm seed} \sim 10^4\!-\!10^6\, \mathrm{M}_{\odot }\, h^{-1})$ in haloes with a total mass >3000 × Mseed and a dense, metal-poor gas mass >5 × Mseed. Within this framework, we find that the seed-forming haloes have a prior history of star formation and metal enrichment, but they also contain pockets of dense, metal-poor gas. When seeding is further restricted to haloes with low gas spins, the number of seeds formed is suppressed by factors of ∼6 compared to the baseline model, regardless of the seed mass. Seed formation is much more strongly impacted if the dense, metal-poor gas is required to have a critical LW flux (Jcrit). Even for Jcrit values as low as 50J21, no $8\times 10^{5}~\mathrm{M}_{\odot }\, h^{-1}$ seeds are formed. While lower mass ($1.25\times 10^{4},1\times 10^{5}~\mathrm{M}_{\odot }\, h^{-1}$) seeds do form, they are strongly suppressed (by factors of ∼10–100) compared to the baseline model at gas mass resolutions of $\sim 10^4~\mathrm{M}_{\odot }\, h^{-1}$ (with even stronger suppression at higher resolutions). As a result, BH merger rates are also similarly suppressed. Since early BH growth is dominated by mergers in our models, none of the seeds are able to grow to the supermassive regime ($\gtrsim 10^6~\mathrm{M}_{\odot }\, h^{-1}$) by z = 7. Our results hint that producing the bulk of the z ≳ 6 supermassive BH population may require alternate seeding scenarios that do not depend on the LW flux, early BH growth dominated by rapid or super-Eddington accretion, or a combination of these possibilities.

     
    more » « less
  3. ABSTRACT

    The physical origin of the seeds of supermassive black holes (SMBHs), with postulated initial masses ranging from ∼105 M⊙ to as low as ∼102 M⊙, is currently unknown. Most existing cosmological hydrodynamic simulations adopt very simple, ad hoc prescriptions for BH seeding and seed at unphysically high masses ∼105–106 M⊙. In this work, we introduce a novel sub-grid BH seeding model for cosmological simulations that is directly calibrated to high-resolution zoom simulations that explicitly resolve ∼103 M⊙ seeds forming within haloes with pristine, dense gas. We trace the BH growth along galaxy merger trees until their descendants reach masses of ∼104 or 105 M⊙. The results are used to build a new stochastic seeding model that directly seeds these descendants in lower resolution versions of our zoom region. Remarkably, we find that by seeding the descendants simply based on total galaxy mass, redshift and an environmental richness parameter, we can reproduce the results of the detailed gas-based seeding model. The baryonic properties of the host galaxies are well reproduced by the mass-based seeding criterion. The redshift-dependence of the mass-based criterion captures the combined influence of halo growth, dense gas formation, and metal enrichment on the formation of ∼103 M⊙ seeds. The environment-based seeding criterion seeds the descendants in rich environments with higher numbers of neighbouring galaxies. This accounts for the impact of unresolved merger dominated growth of BHs, which produces faster growth of descendants in richer environments with more extensive BH merger history. Our new seed model will be useful for representing a variety of low-mass seeding channels within next-generation larger volume uniform cosmological simulations.

     
    more » « less
  4. ABSTRACT

    We use the simba cosmological galaxy formation simulation to investigate the relationship between major mergers ($\lesssim$4:1), starbursts, and galaxy quenching. Mergers are identified via sudden jumps in stellar mass M* well above that expected from in situ star formation, while quenching is defined as going from specific star formation rate (sSFR) $\gt t_{\rm H}^{-1}$ to $\lt 0.2t_{\rm H}^{-1}$, where tH is the Hubble time. At z ≈ 0–3, mergers show ∼2–3× higher SFR than a mass-matched sample of star-forming galaxies, but globally represent $\lesssim 1{{\ \rm per\ cent}}$ of the cosmic SF budget. At low masses, the increase in SFR in mergers is mostly attributed to an increase in the H2 content, but for $M_*\gtrsim 10^{10.5} \,\mathrm{ M}_{\odot }$ mergers also show an elevated star formation efficiency suggesting denser gas within merging galaxies. The merger rate for star-forming galaxies shows a rapid increase with redshift, ∝(1 + z)3.5, but the quenching rate evolves much more slowly, ∝(1 + z)0.9; there are insufficient mergers to explain the quenching rate at $z\lesssim 1.5$. simba first quenches galaxies at $z\gtrsim 3$, with a number density in good agreement with observations. The quenching time-scales τq are strongly bimodal, with ‘slow’ quenchings (τq ∼ 0.1tH) dominating overall, but ‘fast’ quenchings (τq ∼ 0.01tH) dominating in M* ∼ 1010–1010.5 M$\odot$ galaxies, likely induced by simba’s jet-mode black hole feedback. The delay time distribution between mergers and quenching events suggests no physical connection to either fast or slow quenching. Hence, simba predicts that major mergers induce starbursts, but are unrelated to quenching in either fast or slow mode.

     
    more » « less
  5. ABSTRACT

    Radio-loud active galactic nuclei (RLAGNs) are a unique AGN population and were thought to be preferentially associated with supermassive black holes (SMBHs) at low accretion rates. They could impact the host galaxy evolution by expelling cold gas through the jet-mode feedback. In this work, we studied CO(6−5) line emission and continuum emission in a high-redshift radio galaxy, MRC 0152−209, at z = 1.92 using ALMA (Atacama Large Millimeter/submillimeter Array) up to a 0.024″ resolution (corresponding to ∼200 pc at z = 1.92). This system is a starburst major merger comprising two galaxies: the north-west (NW) galaxy hosting the RLAGN with jet kinetic power Ljet ≳ 2 × 1046  erg s−1 and the other galaxy to the south-east (SE). Based on the spectral energy distribution fitting for the entire system (NW+SE galaxies), we find an AGN bolometric luminosity LAGN, bol ∼ 3 × 1046  erg s−1 with a lower limit of ∼0.9 × 1046  erg s−1 for the RLAGN. We estimate the black hole mass through MBH–M⋆ scaling relations and find an Eddington ratio of λEdd ∼ 0.07–4 conservatively by adopting the lower limit of LAGN, bol and considering the dispersion of the scaling relation. These results suggest that the RLAGN is radiatively efficient and the powerful jets could be launched from a super-Eddington accretion disc. ALMA Cycle 6 observations further reveal a massive (${M}_\mathrm{H_2}=(1.1-2.3)\times 10^9\ \rm M_\odot$), compact (∼500 pc), and monopolar molecular outflow perpendicular to the jet axis. The corresponding mass outflow rate ($1200^{+300}_{-300}-2600^{+600}_{-600}\ \mathrm{M_\odot }\ \rm yr^{-1}$) is comparable with the star formation rate of at least $\sim 2100\ \mathrm{M_\odot }\ \rm yr^{-1}$. Depending on the outflowing molecular gas mass, the outflow kinetic power/LAGN, bol ratio of ∼0.008–0.02, and momentum boost factor of ∼3–24 agree with a radiative-mode AGN feedback scenario. On the other hand, the jets can also drive the molecular outflow within its lifetime of ∼2 × 105 yr without additional energy supply from AGN radiation. The jet-mode feedback is then capable of removing all cold gas from the host galaxy through the long-term, episodic launching of jets. Our study reveals a unique object where starburst activity, powerful jets, and rapid BH growth co-exist, which may represent a fundamental stage of AGN-host galaxy co-evolution.

     
    more » « less