Because Chinese reading and writing systems are not phonetic, Mandarin Chinese learners must construct six-way mental connections in order to learn new words, linking characters, meanings, and sounds. Little research has focused on the difficulties inherent to each specific component involved in this process, especially within digital learning environments. The present work examines Chinese word acquisition within ASSISTments, an online learning platform traditionally known for mathematics education. Students were randomly assigned to one of three conditions in which researchers manipulated a learning assignment to exclude one of three bi-directional connections thought to be required for Chinese language acquisition (i.e., sound-meaning and meaning-sound). Researchers then examined whether students’ performance differed significantly when the learning assignment lacked sound-character, character-meaning, or meaning-sound connection pairs, and whether certain problem types were more difficult for students than others. Assessment of problems by component type (i.e., characters, meanings, and sounds) revealed support for the relative ease of problems that provided sounds, with students exhibiting higher accuracy with fewer attempts and less need for system feedback when sounds were included. However, analysis revealed no significant differences in word acquisition by condition, as evidenced by next-day post-test scores or pre- to post-test gain scores. Implications and suggestions formore »
A Comparison of Hints vs. Scaffolding in a MOOC with Adult Learners.
Scaffolding and providing feedback on problem-solving activities during online learning has consistently been shown to improve performance in younger learners. However, less is known about the impacts of feedback strategies on adult learners. This paper investigates how two computer-based support strategies, hints and required scaffolding questions, contribute to performance and behavior in an edX MOOC with integrated assignments from ASSISTments, a web-based platform that implements diverse student supports. Results from a sample of 188 adult learners indicated that those given scaffolds benefited less from ASSISTments support and were more likely to request the correct answer from the system.
- Editors:
- Roll, I.; McNamara, D.; Sosnovsky, S.; Luckin, R.; Dimitrova, V.
- Publication Date:
- NSF-PAR ID:
- 10285783
- Journal Name:
- Artificial Intelligence in Education
- Volume:
- 12749
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This poster showcases the progress of students who are receiving scholarships from the National Science Foundation S-STEM project: A Pathway to Completion for Pursuing Engineering and Engineering Technology Degrees. Thus far, 20 academically high-achieving students who demonstrate financial need have participated in the project. Thirty-six scholarships have been awarded to date, in which a maximum of twelve scholarships are awarded per semester; some students have received scholarships multiple times. Students are from electrical engineering, computer engineering, mechanical engineering, civil engineering, civil engineering technology, and modeling and simulation majors. As part of this S-STEM project, students also receive academic support, mentorship related to the development of professional workforce skills, career search skills, and opportunities to participate in industry-related field trips. Role models, many of whom are practicing engineers with STEM degrees and are military veterans, serve as presenters and share their personal career pathways and answer students’ questions in the required one-hour weekly seminar. Although the students participating in this project meet the strenuous academic criteria set by the project (3.0/4.0), many of the students struggle financially, due to having expended their G.I. benefits, which can impede their academic performance and graduation. While many student success programs focus on freshman andmore »
-
Evidence has shown that facilitating student-centered learning (SCL) in STEM classrooms enhances student learning and satisfaction [1]–[3]. However, despite increased support from educational and government bodies to incorporate SCL practices [1], minimal changes have been made in undergraduate STEM curriculum [4]. Faculty often teach as they were taught, relying heavily on traditional lecture-based teaching to disseminate knowledge [4]. Though some faculty express the desire to improve their teaching strategies, they feel limited by a lack of time, training, and incentives [4], [5]. To maximize student learning while minimizing instructor effort to change content, courses can be designed to incorporate simpler, less time-consuming SCL strategies that still have a positive impact on student experience. In this paper, we present one example of utilizing a variety of simple SCL strategies throughout the design and implementation of a 4-week long module. This module focused on introductory tissue engineering concepts and was designed to help students learn foundational knowledge within the field as well as develop critical technical skills. Further, the module sought to develop important professional skills such as problem-solving, teamwork, and communication. During module design and implementation, evidence-based SCL teaching strategies were applied to ensure students developed important knowledge and skills withinmore »
-
The HSI (Hispanic Serving Institution) ATE (Advanced Technological Education) Hub 2 is a three-year collaborative research project funded by the National Science Foundation (NSF) that continues the partnership between two successful programs and involves a third partner in piloting professional development that draws upon findings from the initial program. The goal of HSI ATE Hub 2 is to improve outcomes for Latinx students in technician education programs through design, development, pilot delivery, and dissemination of a 3-tier professional development (PD) model for culturally responsive technician education at 2-year Hispanic Serving Institutions (HSIs). The project seeks to do this by developing the awareness and ability of faculty to appreciate, engage, and affirm the unique cultural identities of the students in their classes and use this connection to deepen students’ belonging and emerging identities as STEM learners and future STEM technicians. This paper shares the research foundations shaping this approach and the methods by which faculty professional development is being provided to develop this important and sensitive instructional capability in participating faculty. The tiered PD model features a scaffolded series of reflective and activity-oriented modules to incrementally enrich the instructional practices and mindset of HSI STEM educators and strengthen their repertoire ofmore »
-
The HSI (Hispanic Serving Institution) ATE (Advanced Technological Education) Hub 2 is a three-year collaborative research project funded by the National Science Foundation (NSF) that continues the partnership between two successful programs and involves a third partner in piloting professional development that draws upon findings from the initial program. The goal of HSI ATE Hub 2 is to improve outcomes for Latinx students in technician education programs through design, development, pilot delivery, and dissemination of a 3-tier professional development (PD) model for culturally responsive technician education at 2-year Hispanic Serving Institutions (HSIs). The project seeks to do this by developing the awareness and ability of faculty to appreciate, engage, and affirm the unique cultural identities of the students in their classes and use this connection to deepen students’ belonging and emerging identities as STEM learners and future STEM technicians. This paper shares the research foundations shaping this approach and the methods by which faculty professional development is being provided to develop this important and sensitive instructional capability in participating faculty. The tiered PD model features a scaffolded series of reflective and activity-oriented modules to incrementally enrich the instructional practices and mindset of HSI STEM educators and strengthen their repertoire ofmore »