skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The making of a metric: Co-producing decision-relevant climate science
Capsule Summary Understanding how science is co-produced is a science unto itself. Using the case of Project Hyperion, we illustrate how co-production works (or does not work) in practice.  more » « less
Award ID(s):
1633740
PAR ID:
10285802
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Bulletin of the American Meteorological Society
ISSN:
0003-0007
Page Range / eLocation ID:
1 to 33
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Addressing the challenges of wildland fire requires that fire science be relevant to management and integrated into management decisions. Co-production is often touted as a process that can increase the utility of science for management, by involving scientists and managers in knowledge creation and problem solving. Despite the documented benefits of co-production, these efforts face a number of institutional barriers. Further research is needed on how to institutionalise support and incentivise co-production. To better understand how research organisations enable and constrain co-production, this study examined seven co-produced wildland fire projects associated with the US Department of Agriculture Forest Service Rocky Mountain Research Station (RMRS), through in-depth interviews with scientists, managers and community members. Results provide insights into how organisational structures and cultures influence the co-production of fire science. Research organisations like RMRS may be able to institutionalise co-production by adjusting the way they incentivise and evaluate researchers, increasing investment in science delivery and scientific personnel overall, and supplying long-term funding to support time-intensive collaborations. These sorts of structural changes could help transform the culture of fire science so that co-production is valued alongside more conventional scientific activities and products. 
    more » « less
  2. Abstract To promote a justice‐oriented approach to science education, we formed a research‐practice partnership between middle school science teachers, their students, curriculum designers, learning scientists, and experts in social justice to co‐design and test an environmental justice unit for middle school instruction. We examine teacher perspectives on the challenges and possibilities of integrating social justice into their standards‐aligned science teaching as they participate in co‐design and teach the unit. The unit supports students to investigate racially disparate rates of asthma in their community by examining pollution maps and historical redlining maps. We analyze interviews and co‐design artifacts from two teachers who participated in the co‐design and taught the unit in their classrooms. Our findings point to the benefits of a shared pedagogical framework and an initial unit featuring local historical content to structure co‐design. Findings also reveal that teachers can share similar goals for empowering students to use science knowledge for civic action while framing the local socio‐political factors contributing to the injustice differently, due in part to different institutional supports and constraints. Student interviews and a pre/postassessment illustrate how the unit facilitated students' progress in connecting socio‐political and science ideas to explain the impacts of particulate matter pollution and who is impacted most. Analyses illuminate how teachers' pedagogical choices may influence whether and how students discuss the impact of systemic racism in their explanations. The findings inform refinement of the unit and suggest supports needed for co‐design partnerships focused on integrating social justice and science. 
    more » « less
  3. Youth-focused community and citizen science (CCS) is increasingly used to promote science learning and to increase the accessibility of the tools of scientific research among historically marginalized and underserved communities. CCS projects are frequently categorized according to their level of public participation and their distribution of power between professional scientists and participants from collaborative and co-created projects to projects where participants have limited roles within the science process. In this study, we examined how two different CCS models, a contributory design and a co-created design, influenced science self-efficacy and science interest among youth CCS participants. We administered surveys and conducted post-program interviews with youth participation in two different CCS projects in Alaska, the Winterberry Project and Fresh Eyes on Ice, each with a contributory and a co-created model. We found that youth participating in co-created CCS projects reflected more often on their science self-efficacy than did youth in contributory projects. The CCS program model did not influence youths’ science interest, which grew after participating in both contributory and co-created projects. Our findings suggest that when youth have more power and agency to make decisions in the science process, as in co-created projects, they have greater confidence in their abilities to conduct science. Further, participating in CCS projects excites and engages youth in science learning, regardless of the CCS program design. 
    more » « less
  4. Co-production has become a cornerstone of research within the sustainability sciences, motivating collaborations of diverse actors to conduct research in the service of societal and policy change. This review examines theoretical and empirical literature from sustainability science, public administration, and science and technology studies (STS) with the intention of advancing the theory and practice of co-production within sustainability science. We argue that co-production must go beyond stakeholder engagement by scientists to the more deliberate design of societal transitions. Co-production can contribute to such transitions by shifting the institutional arrangements that govern relationships between knowledge and power, science and society, and state and citizens. We highlight critical weaknesses in conceptualizations of co-production within sustainability sciences with respect to power, politics, and governance. We offer suggestions for how this can be rectified through deeper engagement with public administration and STS to offer a broad vision for enhancing the use, design, and practice of a more reflexive co-production in sustainability science. Expected final online publication date for the Annual Review of Environment and Resources Volume 44 is October 17, 2019. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  5. Integrating computational thinking (CT) in the science classroom presents the opportunity to simultaneously broaden participation in computing, enhance science content learning, and engage students in authentic scientific practice. However, there is a lot more to learn on how teachers might integrate CT activities within their existing curricula. In this work, we describe a process of co-design with researchers and teachers to develop CT-infused science curricula. Specifically, we present a case study of one veteran physics teacher whose conception of CT during a professional development institute changed over time. We use this case study to explore how CT is perceived in physics instruction, a field that has a long history of computational learning opportunities. We also discuss how a co-design process led to the development of a lens through which to identify fruitful opportunities to integrate CT activities in physics curricula which we term computational transparency–purposefully revealing the inner workings of computational tools that students already use in the classroom. 
    more » « less