skip to main content

Title: Blazar jets launched with similar energy per baryon, independently of their power
ABSTRACT The most extreme active galactic nuclei are the radio active ones whose relativistic jet propagates close to our line of sight. These objects were first classified according to their emission-line features into flat-spectrum radio quasars (FSRQs) and BL Lacertae objects (BL Lacs). More recently, observations revealed a trend between these objects known as the blazar sequence, along with an anticorrelation between the observed power and the frequency of the synchrotron peak. In this work, we propose a fairly simple idea that could account for the whole blazar population: all jets are launched with similar energy per baryon, independently of their power. In the case of FSRQs, the most powerful jets manage to accelerate to high-bulk Lorentz factors, as observed in the radio. As a result, they have a rather modest magnetization in the emission region, resulting in magnetic reconnection injecting a steep particle–energy distribution and, consequently, steep emission spectra in the γ-rays. For the weaker jets, namely BL Lacs, the opposite holds true; i.e. the jet does not achieve a very high bulk Lorentz factor, leading to more magnetic energy available for non-thermal particle acceleration, and harder emission spectra at frequencies ≳ GeV. In this scenario, we recover all more » observable properties of blazars with our simulations, including the blazar sequence for models with mild baryon loading (50 ≲ μ ≲ 80). This interpretation of the blazar population therefore tightly constrains the energy per baryon of blazar jets regardless of their accretion rate. « less
Authors:
; ;
Award ID(s):
1910451 1816136
Publication Date:
NSF-PAR ID:
10285823
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
501
Issue:
3
Page Range or eLocation-ID:
4092 to 4102
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Relativistic jets launched by rotating black holes are powerful emitters of non-thermal radiation. Extraction of the rotational energy via electromagnetic stresses produces magnetically dominated jets, which may become turbulent. Studies of magnetically dominated plasma turbulence from first principles show that most of the accelerated particles have small pitch angles, i.e. the particle velocity is nearly aligned with the local magnetic field. We examine synchrotron self-Compton radiation from anisotropic particles in the fast cooling regime. The small pitch angles reduce the synchrotron cooling rate and promote the role of inverse Compton (IC) cooling, which can occur in two different regimes. In the Thomson regime, both synchrotron and IC components have soft spectra, νFν ∝ ν1/2. In the Klein–Nishina regime, synchrotron radiation has a hard spectrum, typically νFν ∝ ν, over a broad range of frequencies. Our results have implications for the modelling of BL Lacertae objects (BL Lacs) and gamma-ray bursts (GRBs). BL Lacs produce soft synchrotron and IC spectra, as expected when Klein–Nishina effects are minor. The observed synchrotron and IC luminosities are typically comparable, which indicates a moderate anisotropy with pitch angles θ ≳ 0.1. Rare orphan gamma-ray flares may be produced when θ ≪ 0.1. The hard spectra of GRBs maymore »be consistent with synchrotron radiation when the emitting particles are IC cooling in the Klein–Nishina regime, as expected for pitch angles θ ∼ 0.1. Blazar and GRB spectra can be explained by turbulent jets with a similar electron plasma magnetization parameter, σe ∼ 104, which for electron–proton plasmas corresponds to an overall magnetization σ = (me/mp)σe ∼ 10.« less
  2. Context. Blazars are the most numerous class of high-energy (HE; E ∼ 50 MeV−100 GeV) and very high-energy (VHE; E ∼ 100 GeV−10 TeV) gamma-ray emitters. Currently, a measured spectroscopic redshift is available for only about 50% of gamma-ray BL Lacertae objects (BL Lacs), mainly due to the difficulty in measuring reliable redshifts from their nearly featureless continuum-dominated optical spectra. The knowledge of the redshift is fundamental for understanding the emission from blazars, for population studies and also for indirect studies of the extragalactic background light and searches for Lorentz invariance violation and axion-like particles using blazars. Aims. This paper is the first in a series of papers that aim to measure the redshift of a sample of blazars likely to be detected with the upcoming Cherenkov Telescope Array (CTA), a ground-based gamma-ray observatory. Methods. Monte Carlo simulations were performed to select those hard spectrum gamma-ray blazars detected with the Fermi -LAT telescope still lacking redshift measurements, but likely to be detected by CTA in 30 hours of observing time or less. Optical observing campaigns involving deep imaging and spectroscopic observations were organised to efficiently constrain their redshifts. We performed deep medium- to high-resolution spectroscopy of 19 blazar optical counterpartsmore »with the Keck II, SALT, and ESO NTT telescopes. We searched systematically for spectral features and, when possible, we estimated the contribution of the host galaxy to the total flux. Results. We measured eleven firm spectroscopic redshifts with values ranging from 0.1116 to 0.482, one tentative redshift, three redshift lower limits including one at z ≥ 0.449 and another at z ≥ 0.868. Four BL Lacs show featureless spectra.« less
  3. Abstract Recently, particle in cell (PIC) simulations have shown that relativistic turbulence in collisionless plasmas can result in an equilibrium particle distribution function where turbulent heating is balanced by radiative cooling of electrons. Strongly magnetized plasmas are characterized by higher energy peaks and broader particle distributions. In relativistically moving astrophysical jets, it is believed that the flow is launched Poynting flux dominated and that the resulting magnetic instabilities may create a turbulent environment inside the jet, i.e., the regime of relativistic turbulence. In this paper, we extend previous PIC simulation results to larger values of plasma magnetization by linearly extrapolating the diffusion and advection coefficients relevant for the turbulent plasmas under consideration. We use these results to build a single zone turbulent jet model that is based on the global parameters of the blazar emission region, and consistently calculate the particle distribution and the resulting emission spectra. We then test our model by comparing its predictions with the broad-band quiescent emission spectra of a dozen blazars. Our results show good agreement with observations of low-synchrotron peaked (LSP) sources and find that LSPs are moderately Poynting flux dominated with magnetization 1 ≲ σ ≲ 5, have bulk Lorentz factor Γj ∼more »10 − 30, and that the turbulent region is located at the edge, or just beyond, the broad-line region (BLR). The turbulence is found to be driven at an area comparable to the jet cross section.« less
  4. ABSTRACT Relativistic jets from supermassive black holes are among the most powerful and luminous astrophysical systems in Universe. We propose that the open magnetic field lines through the black hole, which drive a strongly magnetized jet, may have their polarity reversing over time scales related to the growth of the magnetorotational dynamo in the disc, resulting in dissipative structures in the jet characterized by reversing toroidal field polarities, referred to as ‘stripes’. The magnetic reconnection between the stripes dissipates the magnetic energy and powers jet acceleration. The striped jet model can explain the jet acceleration, large-scale jet emission, and blazar emission signatures consistently in a unified physical picture. Specifically, we find that the jet accelerates to the bulk Lorentz factor Γ ≳ 10 within 1-parsec distance from the central engine. The acceleration slows down but continues at larger distances, with intrinsic acceleration rate $\dot{\Gamma }/\Gamma$ between $0.0005$ and $0.005~\rm {yr^{-1}}$ at tens of parsecs, which is in very good agreement with recent radio observations. Magnetic reconnection continuously accelerates non-thermal particles over large distances from the central engine, resulting in the core-shift effect and overall flat-to-inverted synchrotron spectrum. The large-scale spectral luminosity peak νpeak is antiproportional to the location of themore »peak of the dissipation, which is set by the minimal stripe width lmin. The blazar zone is approximately at the same location. At this distance, the jet is moderately magnetized, with the comoving magnetic field strength and dissipation power consistent with typical leptonic blazar model parameters.« less
  5. Context. Standing and moving shocks in relativistic astrophysical jets are very promising sites for particle acceleration to large Lorentz factors and for the emission from the radio up to the γ -ray band. They are thought to be responsible for at least part of the observed variability in radio-loud active galactic nuclei. Aims. We aim to simulate the interactions of moving shock waves with standing recollimation shocks in structured and magnetized relativistic jets and to characterize the profiles of connected flares in the radio light curve. Methods. Using the relativistic magneto-hydrodynamic code MPI-AMRVAC and a radiative transfer code in post-processing, we explore the influence of the magnetic-field configuration and transverse stratification of an over-pressured jet on its morphology, on the moving shock dynamics, and on the emitted radio light curve. First, we investigate different large-scale magnetic fields with their effects on the standing shocks and on the stratified jet morphology. Secondly, we study the interaction of a moving shock wave with the standing shocks. We calculated the synthetic synchrotron maps and radio light curves and analyze the variability at two frequencies 1 and 15.3 GHz and for several observation angles. Finally, we compare the characteristics of our simulated light curvesmore »with radio flares observed from the blazar 3C 273 with the Owens Valley Radio Observatory and Very Long Baseline Array in the MOJAVE survey between 2008 and 2019. Results. We find that in a structured over-pressured relativistic jet, the presence of the large-scale magnetic field structure changes the properties of the standing shock waves and leads to an opening in the jet. The interaction between waves from inner and outer jet components can produce strong standing shocks. When crossing such standing shocks, moving shock waves accompanying overdensities injected in the base of the jet cause very luminous radio flares. The observation of the temporal structure of these flares under different viewing angles probes the jet at different optical depths. At 1 GHz and for small angles, the self-absorption caused by the moving shock wave becomes more important and leads to a drop in the observed flux after it interacts with the brightest standing knot. A weak asymmetry is seen in the shape of the simulated flares, resulting from the remnant emission of the shocked standing shocks. The characteristics of the simulated flares and the correlation of peaks in the light curve with the crossing of moving and standing shocks favor this scenario as an explanation of the observed radio flares of 3C 273.« less