Abstract Gamma-ray flares of blazars may be accompanied by high-energy neutrinos due to interactions of high-energy cosmic rays in the jet with photons, as suggested by the detection of the high-energy neutrino IceCube-170922A during a major gamma-ray flare from blazar TXS 0506+056 at the ∼3σsignificance level. In this work, we present a statistical study of gamma-ray emission from blazars to constrain the contribution of gamma-ray flares to their neutrino output. We construct weekly binned light curves for 145 gamma-ray bright blazars in the Fermi Large Area Telescope Monitored Source List adding TXS 0506+056. We derive the fraction of time spent in the flaring state (flare duty cycle) and the fraction of energy released during each flare from the light curves with a Bayesian blocks algorithm. We find that blazars with lower flare duty cycles and energy fractions are more numerous among our sample. We identify a significant difference in flare duty cycles between blazar subclasses at a significance level of 5%. Then using a general scaling relation for the neutrino and gamma-ray luminosities, with a weighting exponent ofγ= 1.0–2.0, normalized to the quiescent gamma-ray or X-ray flux of each blazar, we evaluate the neutrino energy flux of each gamma-ray flare. The gamma-ray flare distribution indicates that blazar neutrino emission may be dominated by flares forγ≳ 1.5. The neutrino energy fluxes for 1 week and 10 yr bins are compared with the decl.-dependent IceCube sensitivity to constrain the standard neutrino emission models for gamma-ray flares. Finally, we present the upper-limit contribution of blazar gamma-ray flares to the isotropic diffuse neutrino flux.
more »
« less
Hadronic signatures from magnetically dominated baryon-loaded AGN jets
ABSTRACT Blazars are a rare class of active galactic nuclei (AGNs) with relativistic jets pointing towards the observer. Jets are thought to be launched as Poynting-flux dominated outflows that accelerate to relativistic speeds at the expense of the available magnetic energy. In this work, we consider electron–proton jets and assume that particles are energized via magnetic reconnection in parts of the jet where the magnetization is still high (σ ≥ 1). The magnetization and bulk Lorentz factor Γ are related to the available jet energy per baryon as μ = Γ(1 + σ). We adopt an observationally motivated relation between Γ and the mass accretion rate into the black hole $$\dot{m}$$, which also controls the luminosity of external radiation fields. We numerically compute the photon and neutrino jet emission as a function of μ and σ. We find that the blazar SED is produced by synchrotron and inverse Compton radiation of accelerated electrons, while the emission of hadronic-related processes is subdominant except for the highest magnetization considered. We show that low-luminosity blazars (Lγ ≲ 1045 erg s−1) are associated with less powerful, slower jets with higher magnetizations in the jet dissipation region. Their broad-band photon spectra resemble those of BL Lac objects, and the expected neutrino luminosity is $$L_{\nu +\bar{\nu }}\sim (0.3-1)\, L_{\gamma }$$. High-luminosity blazars (Lγ ≫ 1045 erg s−1) are associated with more powerful, faster jets with lower magnetizations. Their broad-band photon spectra resemble those of flat spectrum radio quasars, and they are expected to be dim neutrino sources with $$L_{\nu +\bar{\nu }}\ll L_{\gamma }$$.
more »
« less
- PAR ID:
- 10382677
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 518
- Issue:
- 2
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 2719-2734
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)ABSTRACT The most extreme active galactic nuclei are the radio active ones whose relativistic jet propagates close to our line of sight. These objects were first classified according to their emission-line features into flat-spectrum radio quasars (FSRQs) and BL Lacertae objects (BL Lacs). More recently, observations revealed a trend between these objects known as the blazar sequence, along with an anticorrelation between the observed power and the frequency of the synchrotron peak. In this work, we propose a fairly simple idea that could account for the whole blazar population: all jets are launched with similar energy per baryon, independently of their power. In the case of FSRQs, the most powerful jets manage to accelerate to high-bulk Lorentz factors, as observed in the radio. As a result, they have a rather modest magnetization in the emission region, resulting in magnetic reconnection injecting a steep particle–energy distribution and, consequently, steep emission spectra in the γ-rays. For the weaker jets, namely BL Lacs, the opposite holds true; i.e. the jet does not achieve a very high bulk Lorentz factor, leading to more magnetic energy available for non-thermal particle acceleration, and harder emission spectra at frequencies ≳ GeV. In this scenario, we recover all observable properties of blazars with our simulations, including the blazar sequence for models with mild baryon loading (50 ≲ μ ≲ 80). This interpretation of the blazar population therefore tightly constrains the energy per baryon of blazar jets regardless of their accretion rate.more » « less
-
Abstract Short γ -ray burst (sGRB) jets form in the aftermath of a neutron star merger, drill through disk winds and dynamical ejecta, and extend over four to five orders of magnitude in distance before breaking out of the ejecta. We present the first 3D general-relativistic magnetohydrodynamic sGRB simulations to span this enormous scale separation. They feature three possible outcomes: jet+cocoon, cocoon, and neither. Typical sGRB jets break out of the dynamical ejecta if (i) the bound ejecta’s isotropic equivalent mass along the pole at the time of the BH formation is ≲10 −4 M ⊙ , setting a limit on the delay time between the merger and BH formation, otherwise, the jets perish inside the ejecta and leave the jet-inflated cocoon to power a low-luminosity sGRB; (ii) the postmerger remnant disk contains a strong large-scale vertical magnetic field, ≳10 15 G; and (iii) if the jets are weak (≲10 50 erg), the ejecta’s isotropic equivalent mass along the pole must be small (≲10 −2 M ⊙ ). Generally, the jet structure is shaped by the early interaction with disk winds rather than the dynamical ejecta. As long as our jets break out of the ejecta, they retain a significant magnetization (≲1), suggesting that magnetic reconnection is a fundamental property of sGRB emission. The angular structure of the outflow isotropic equivalent energy after breakout consistently features a flat core followed by a steep power-law distribution (slope ≳3), similar to hydrodynamic jets. In the cocoon-only outcome, the dynamical ejecta broadens the outflow angular distribution and flattens it (slope ∼1.5).more » « less
-
Abstract We use the public code ebhlight to carry out 3D radiative general relativistic magnetohydrodynamics (GRMHD) simulations of accretion on to the supermassive black hole in M87. The simulations self-consistently evolve a frequency-dependent Monte Carlo description of the radiation field produced by the accretion flow. We explore two limits of accumulated magnetic flux at the black hole (SANE and MAD), each coupled to several subgrid prescriptions for electron heating that are motivated by models of turbulence and magnetic reconnection. We present convergence studies for the radiation field and study its properties. We find that the near-horizon photon energy density is an order of magnitude higher than is predicted by simple isotropic estimates from the observed luminosity. The radially dependent photon momentum distribution is anisotropic and can be modeled by a set of point-sources near the equatorial plane. We draw properties of the radiation and magnetic field from the simulation and feed them into an analytic model of gap acceleration to estimate the very high energy (VHE) γ-ray luminosity from the magnetized jet funnel, assuming that a gap is able to form. We find luminosities of $$\rm \sim 10^{41} \, erg \, s^{-1}$$ for MAD models and $$\rm \sim 2\times 10^{40} \, erg \, s^{-1}$$ for SANE models, which are comparable to measurements of M87’s VHE flares. The time-dependence seen in our calculations is insufficient to explain the flaring behaviour. Our results provide a step towards bridging theoretical models of near-horizon properties seen in black hole images with the VHE activity of M87.more » « less
-
Abstract Building on a general relativistic magnetohydrodynamic simulation of a short gamma-ray burst (sGRB) jet with initial magnetizationσ0 = 150, propagating through the dynamical ejecta from a binary neutron star merger, we identify regions of energy dissipation driven by magnetic reconnection and collisionless subshocks within different scenarios. We solve the transport equations for photons, electrons, protons, neutrinos, and intermediate particles up to the photosphere, accounting for all relevant radiative processes, including electron and proton acceleration, and investigate the potential impact of magnetic reconnection occurring in different regions along the jet. We find the photon spectra undergo nonthermal modifications below the photosphere, observable in both on-axis and off-axis emission directions, as well as across different scenarios of energy dissipation and subsequent particle acceleration. Interestingly, the spectral index of the photon energy distribution can vary at most by ∼20% across all different dissipation scenarios. Depending on the dissipation mechanism at play, neutrino signatures may accompany the photon signal, pointing to efficient proton acceleration and shedding light on jet physics. Although our findings are based on one jet simulation, they point to a potential universal origin of the nonthermal features of the Band spectrum observed in sGRBs.more » « less
An official website of the United States government
