skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Summer warming explains widespread but not uniform greening in the Arctic tundra biome
Abstract Arctic warming can influence tundra ecosystem function with consequences for climate feedbacks, wildlife and human communities. Yet ecological change across the Arctic tundra biome remains poorly quantified due to field measurement limitations and reliance on coarse-resolution satellite data. Here, we assess decadal changes in Arctic tundra greenness using time series from the 30 m resolution Landsat satellites. From 1985 to 2016 tundra greenness increased (greening) at ~37.3% of sampling sites and decreased (browning) at ~4.7% of sampling sites. Greening occurred most often at warm sampling sites with increased summer air temperature, soil temperature, and soil moisture, while browning occurred most often at cold sampling sites that cooled and dried. Tundra greenness was positively correlated with graminoid, shrub, and ecosystem productivity measured at field sites. Our results support the hypothesis that summer warming stimulated plant productivity across much, but not all, of the Arctic tundra biome during recent decades.  more » « less
Award ID(s):
1504134 1743738
PAR ID:
10285865
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tundra vegetation productivity and composition are responding rapidly to climatic changes in the Arctic. These changes can, in turn, mitigate or amplify permafrost thaw. In this Review, we synthesize remotely sensed and field-observed vegetation change across the tundra biome, and outline how these shifts could influence permafrost thaw. Permafrost ice content appears to be an important control on local vegetation changes; woody vegetation generally increases in ice-poor uplands, whereas replacement of woody vegetation by (aquatic) graminoids following abrupt permafrost thaw is more frequent in ice-rich Arctic lowlands. These locally observed vegetation changes contribute to regional satellite-observed greening trends, although the interpretation of greening and browning is complicated. Increases in vegetation cover and height generally mitigate permafrost thaw in summer, yet, increase annual soil temperatures through snow-related winter soil warming effects. Strong vegetation–soil feedbacks currently alleviate the consequences of thaw-related disturbances. However, if the increasing scale and frequency of disturbances in a warming Arctic exceeds the capacity for vegetation and permafrost recovery, changes to Arctic ecosystems could be irreversible. To better disentangle vegetation– soil– permafrost interactions, ecological field studies remain crucial, but require better integration with geophysical assessments. 
    more » « less
  2. J. Richter-Menge, M. L. (Ed.)
    Highlights•In North America, tundra productivity for the 2019 growing season (the most recent data available) rebounded strongly from the previous year, in tandem with record summer warmth following the cold summer of 2018.•Since 2016, greenness trends have diverged strongly by continent; peak summer greenness has declined sharply in North America but has remained above the long-term mean in Eurasia.•The long-term satellite record (1982-2019) indicates "greening" across most of the Arctic but some regions exhibit "browning," underscoring the dynamic linkages that exist between tundra ecosystems and other elements of a changing Arctic system. 
    more » « less
  3. Abstract In 2022 we resampled normalized difference vegetation index (NDVI) along a 100 m transect in tundra near Utqiagvik, AK that had been previously measured through the 2000–2002 growing seasons, providing an opportunity to examine a 20 year NDVI change at a 1 m resolution in a region that is experiencing increased warming and precipitation over this period. Multidecadal NDVI change was spatially variable across the transect with nearly half of the transect showing greening, about a third not showing conclusive change, and about 20% browning. In wet areas, greening (increased NDVI) was associated with increased green leaf area index, while in drier areas greening was related to changes in species cover. Browning was not related to change in species cover and appeared to be due to increased coverage of standing dead material in graminoid dominated canopies. These types of detailed observations provide insights into the interpretation of satellite based NDVI trends and emphasize the importance of microtopography and hydrology in mediating vegetation change in a warming Arctic. 
    more » « less
  4. Abstract Environmental changes, such as climate warming and higher herbivory pressure, are altering the carbon balance of Arctic ecosystems; yet, how these drivers modify the carbon balance among different habitats remains uncertain. This hampers our ability to predict changes in the carbon sink strength of tundra ecosystems. We investigated how spring goose grubbing and summer warming—two key environmental‐change drivers in the Arctic—alter CO2fluxes in three tundra habitats varying in soil moisture and plant‐community composition. In a full‐factorial experiment in high‐Arctic Svalbard, we simulated grubbing and warming over two years and determined summer net ecosystem exchange (NEE) alongside its components: gross ecosystem productivity (GEP) and ecosystem respiration (ER). After two years, we found net CO2uptake to be suppressed by both drivers depending on habitat. CO2uptake was reduced by warming in mesic habitats, by warming and grubbing in moist habitats, and by grubbing in wet habitats. In mesic habitats, warming stimulated ER (+75%) more than GEP (+30%), leading to a 7.5‐fold increase in their CO2source strength. In moist habitats, grubbing decreased GEP and ER by ~55%, while warming increased them by ~35%, with no changes in summer‐long NEE. Nevertheless, grubbing offset peak summer CO2uptake and warming led to a twofold increase in late summer CO2source strength. In wet habitats, grubbing reduced GEP (−40%) more than ER (−30%), weakening their CO2sink strength by 70%. One‐year CO2‐flux responses were similar to two‐year responses, and the effect of simulated grubbing was consistent with that of natural grubbing. CO2‐flux rates were positively related to aboveground net primary productivity and temperature. Net ecosystem CO2uptake started occurring above ~70% soil moisture content, primarily due to a decline in ER. Herein, we reveal that key environmental‐change drivers—goose grubbing by decreasing GEP more than ER and warming by enhancing ER more than GEP—consistently suppress net tundra CO2uptake, although their relative strength differs among habitats. By identifying how and where grubbing and higher temperatures alter CO2fluxes across the heterogeneous Arctic landscape, our results have implications for predicting the tundra carbon balance under increasing numbers of geese in a warmer Arctic. 
    more » « less
  5. As the Arctic region moves into uncharted territory under a warming climate, it is important to refine the terrestrial biosphere models (TBMs) that help us understand and predict change. One fundamental uncertainty in TBMs relates to model parameters, configuration variables internal to the model whose value can be estimated from data. We incorporate a version of the Terrestrial Ecosystem Model (TEM) developed for arctic ecosystems into the Predictive Ecosystem Analyzer (PEcAn) framework. PEcAn treats model parameters as probability distributions, estimates parameters based on a synthesis of available field data, and then quantifies both model sensitivity and uncertainty to a given parameter or suite of parameters. We examined how variation in 21 parameters in the equation for gross primary production influenced model sensitivity and uncertainty in terms of two carbon fluxes (net primary productivity and heterotrophic respiration) and two carbon (C) pools (vegetation C and soil C). We set up different parameterizations of TEM across a range of tundra types (tussock tundra, heath tundra, wet sedge tundra, and shrub tundra) in northern Alaska, along a latitudinal transect extending from the coastal plain near Utqiaġvik to the southern foothills of the Brooks Range, to the Seward Peninsula. TEM was most sensitive to parameters related to the temperature regulation of photosynthesis. Model uncertainty was mostly due to parameters related to leaf area, temperature regulation of photosynthesis, and the stomatal responses to ambient light conditions. Our analysis also showed that sensitivity and uncertainty to a given parameter varied spatially. At some sites, model sensitivity and uncertainty tended to be connected to a wider range of parameters, underlining the importance of assessing tundra community processes across environmental gradients or geographic locations. Generally, across sites, the flux of net primary productivity (NPP) and pool of vegetation C had about equal uncertainty, while heterotrophic respiration had higher uncertainty than the pool of soil C. Our study illustrates the complexity inherent in evaluating parameter uncertainty across highly heterogeneous arctic tundra plant communities. It also provides a framework for iteratively testing how newly collected field data related to key parameters may result in more effective forecasting of Arctic change. 
    more » « less