skip to main content


Title: Tundra vegetation change and impacts on permafrost
Tundra vegetation productivity and composition are responding rapidly to climatic changes in the Arctic. These changes can, in turn, mitigate or amplify permafrost thaw. In this Review, we synthesize remotely sensed and field-observed vegetation change across the tundra biome, and outline how these shifts could influence permafrost thaw. Permafrost ice content appears to be an important control on local vegetation changes; woody vegetation generally increases in ice-poor uplands, whereas replacement of woody vegetation by (aquatic) graminoids following abrupt permafrost thaw is more frequent in ice-rich Arctic lowlands. These locally observed vegetation changes contribute to regional satellite-observed greening trends, although the interpretation of greening and browning is complicated. Increases in vegetation cover and height generally mitigate permafrost thaw in summer, yet, increase annual soil temperatures through snow-related winter soil warming effects. Strong vegetation–soil feedbacks currently alleviate the consequences of thaw-related disturbances. However, if the increasing scale and frequency of disturbances in a warming Arctic exceeds the capacity for vegetation and permafrost recovery, changes to Arctic ecosystems could be irreversible. To better disentangle vegetation– soil– permafrost interactions, ecological field studies remain crucial, but require better integration with geophysical assessments.  more » « less
Award ID(s):
1931332
NSF-PAR ID:
10352932
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature reviews
ISSN:
2662-138X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rapid Arctic warming is expected to result in widespread permafrost degradation. However, observations show that site-specific conditions (vegetation and soils) may offset the reaction of permafrost to climate change. This paper summarizes 43 years of interannual seasonal thaw observations from tundra landscapes surrounding the Marre-Sale on the west coast of the Yamal Peninsula, northwest Siberia. This robust dataset includes landscape-specific climate, active layer thickness, soil moisture, and vegetation observations at multiple scales. Long-term trends from these hierarchically scaled observations indicate that drained landscapes exhibit the most pronounced responses to changing climatic conditions, while moist and wet tundra landscapes exhibit decreasing active layer thickness, and river floodplain landscapes do not show changes in the active layer. The slow increase in seasonal thaw depth despite significant warming observed over the last four decades on the Yamal Peninsula can be explained by thickening moss covers and ground surface subsidence as the transient layer (ice-rich upper permafrost soil horizon) thaws and compacts. The uneven proliferation of specific vegetation communities, primarily mosses, is significantly contributing to spatial variability observed in active layer dynamics. Based on these findings, we recommend that regional permafrost assessments employ a mean landscape-scale active layer thickness that weights the proportions of different landscape types. 
    more » « less
  2. Abstract

    Satellite remote sensing data have indicated a general ‘greening’ trend in the arctic tundra biome. However, the observed changes based on remote sensing are the result of multiple environmental drivers, and the effects of individual controls such as warming, herbivory, and other disturbances on changes in vegetation biomass, community structure, and ecosystem function remain unclear. We apply ArcVeg, an arctic tundra vegetation dynamics model, to estimate potential changes in vegetation biomass and net primary production (NPP) at the plant community and functional type levels. ArcVeg is driven by soil nitrogen output from the Terrestrial Ecosystem Model, existing densities ofRangiferpopulations, and projected summer temperature changes by theNCAR CCSM4.0 general circulation model across the Arctic. We quantified the changes in aboveground biomass andNPPresulting from (i) observed herbivory only; (ii) projected climate change only; and (iii) coupled effects of projected climate change and herbivory. We evaluated model outputs of the absolute and relative differences in biomass andNPPby country, bioclimate subzone, and floristic province. Estimated potential biomass increases resulting from temperature increase only are approximately 5% greater than the biomass modeled due to coupled warming and herbivory. Such potential increases are greater in areas currently occupied by large or denseRangiferherds such as the Nenets‐occupied regions in Russia (27% greater vegetation increase without herbivores). In addition, herbivory modulates shifts in plant community structure caused by warming. Plant functional types such as shrubs and mosses were affected to a greater degree than other functional types by either warming or herbivory or coupled effects of the two.

     
    more » « less
  3. Abstract

    In Low Arctic tundra, thermal erosion of ice‐rich permafrost soils (thermokarst) has increased in frequency since the 1980s. Retrogressive thaw slumps (RTS) are thermokarst disturbances forming large open depressions on hillslopes through soil wasting and vegetation displacement. Tall (>0.5 m) deciduous shrubs have been observed in RTS a decade after disturbance. RTS may provide conditions suitable for seedling recruitment, which may contribute to Arctic shrub expansion. We quantified in situ seedling abundance, and size and viability of soil seedbanks in greenhouse trials for two RTS chronosequences near lakes on Alaska's North Slope. We hypothesized recent RTS provide microsites for greater recruitment than mature RTS or undisturbed tundra. We also hypothesized soil seedbanks demonstrate quantity–quality trade‐offs; younger seedbanks contain smaller numbers of mostly viable seed that decrease in viability as seed accumulates over time. We found five times as many seedlings in younger RTS as in older RTS, including birch and willow, and no seedlings in undisturbed tundra. Higher seedling counts were associated with bare soil, warmer soils, higher soil available nitrogen, and less plant cover. Seedbank viability was unrelated to size. Older seedbanks were larger at one chronosequence, with no difference in percent germination. At the other chronosequence, germination was lower from older seedbanks but seedbank size was not different. Seedbank germination was positively associated with in situ seedling abundance at one RTS chronosequence, suggesting postdisturbance revegetation from seedbanks. Thermal erosion may be important for recruitment in tundra by providing bare microsites that are warmer, more nutrient‐rich, and less vegetated than in undisturbed ground. Differences between two chronosequences in seedbank size, viability, and species composition suggest disturbance interacts with local conditions to form seedbanks. RTS may act as seedling nurseries to benefit many Arctic species as climate changes, particularly those that do not produce persistent seed.

     
    more » « less
  4. Abstract

    Significant uncertainties persist concerning how Arctic soil tundra carbon emission responds to environmental changes. In this study, 24 cores were sampled from drier (high centre polygons and rims) and wetter (low centre polygons and troughs) permafrost tundra ecosystems. We examined how soil CO2and CH4fluxes responded to laboratory-based manipulations of soil temperature (and associated thaw depth) and water table depth, representing current and projected conditions in the Arctic. Similar soil CO2respiration rates occurred in both the drier and the wetter sites, suggesting that a significant proportion of soil CO2emission occurs via anaerobic respiration under water-saturated conditions in these Arctic tundra ecosystems. In the absence of vegetation, soil CO2respiration rates decreased sharply within the first 7 weeks of the experiment, while CH4emissions remained stable for the entire 26 weeks of the experiment. These patterns suggest that soil CO2emission is more related to plant input than CH4production and emission. The stable and substantial CH4emission observed over the entire course of the experiment suggests that temperature limitations, rather than labile carbon limitations, play a predominant role in CH4production in deeper soil layers. This is likely due to the presence of a substantial source of labile carbon in these carbon-rich soils. The small soil temperature difference (a median difference of 1 °C) and a more substantial thaw depth difference (a median difference of 6 cm) between the high and low temperature treatments resulted in a non-significant difference between soil CO2and CH4emissions. Although hydrology continued to be the primary factor influencing CH4emissions, these emissions remained low in the drier ecosystem, even with a water table at the surface. This result suggests the potential absence of a methanogenic microbial community in high-centre polygon and rim ecosystems. Overall, our results suggest that the temperature increases reported for these Arctic regions are not responsible for increases in carbon losses. Instead, it is the changes in hydrology that exert significant control over soil CO2and CH4emissions.

     
    more » « less
  5. Abstract

    As the Arctic warms, tundra wildfires are expected to become more frequent and severe. Assessing how the most flammable regions of the tundra respond to burning can inform us about how the rest of the Arctic may be affected by climate change. Here we describe ecosystem responses to tundra fires in the Noatak River watershed of northwestern Alaska using shrub dendrochronology, active‐layer depth monitoring, and remotely sensed vegetation productivity. Results show that relatively productive tundra is more likely to experience fires and to burn more severely, suggesting that fuel loads currently limit tundra fire distribution in the Noatak Valley. Within three years of burning, most alder shrubs sampled had either germinated or resprouted, and vegetation productivity inside 60 burn perimeters had recovered to prefire values. Tundra fires resulted in two phases of increased primary productivity as manifested by increased landscape greening. Phase one occurred in most burned areas 3–10 years after fires, and phase two occurred 16–44 years after fire at sites where tundra fires triggered near‐surface permafrost thaw resulting in shrub proliferation. A fire‐shrub‐greening positive feedback is currently operating in the Noatak Valley and this feedback could expand northward as air temperatures, fire frequencies, and permafrost degradation increase. This feedback will not occur at all locations. In the Noatak Valley, the fire‐shrub‐greening process is relatively limited in tussock tundra communities, where low‐severity fires and shallow active layers exclude shrub proliferation. Climate warming and enhanced fire occurrence will likely shift fire‐poor landscapes into either the tussock tundra or erect‐shrub‐tundra ecological attractor states that now dominate the fire‐rich Noatak Valley.

     
    more » « less