skip to main content


Title: Isomorphic spectrum and isomorphic length of a Banach space
We prove that, given any ordinal $\delta < \omega_2$, there exists a transfinite $\delta$-sequence of separable Banach spaces $(X_\alpha)_{\alpha < \delta}$ such that $X_\alpha$ embeds isomorphically into $X_\beta$ and contains no subspace isomorphic to $X_\beta$ for all $\alpha < \beta < \delta$. All these spaces are subspaces of the Banach space $E_p = \bigl( \bigoplus_{n=1}^\infty \ell_p \bigr)_2$, where $1 \leq p < 2$. Moreover, assuming Martin's axiom, we prove the same for all ordinals $\delta$ of continuum cardinality.  more » « less
Award ID(s):
1700176
NSF-PAR ID:
10285954
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Carpathian Mathematical Publications
Volume:
12
Issue:
1
ISSN:
2075-9827
Page Range / eLocation ID:
88 to 93
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Two stages of the creative writing process were characterized through mobile scalp electroencephalography (EEG) in a 16-week creative writing workshop. Portable dry EEG systems (four channels: TP09, AF07, AF08, TP10) with synchronized head acceleration, video recordings, and journal entries, recorded mobile brain-body activity of Spanish heritage students. Each student's brain-body activity was recorded as they experienced spaces in Houston, Texas (“Preparation” stage), and while they worked on their creative texts (“Generation” stage). We used Generalized Partial Directed Coherence (gPDC) to compare the functional connectivity among both stages. There was a trend of higher gPDC in the Preparation stage from right temporo-parietal (TP10) to left anterior-frontal (AF07) brain scalp areas within 1–50 Hz, not reaching statistical significance. The opposite directionality was found for the Generation stage, with statistical significant differences ( p < 0.05) restricted to the delta band (1–4 Hz). There was statistically higher gPDC observed for the inter-hemispheric connections AF07–AF08 in the delta and theta bands (1–8 Hz), and AF08 to TP09 in the alpha and beta (8–30 Hz) bands. The left anterior-frontal (AF07) recordings showed higher power localized to the gamma band (32–50 Hz) for the Generation stage. An ancillary analysis of Sample Entropy did not show significant difference. The information transfer from anterior-frontal to temporal-parietal areas of the scalp may reflect multisensory interpretation during the Preparation stage, while brain signals originating at temporal-parietal toward frontal locations during the Generation stage may reflect the final decision making process to translate the multisensory experience into a creative text. 
    more » « less
  2. Abstract

    We study the problem of estimating a $k$-sparse signal ${\boldsymbol \beta }_{0}\in{\mathbb{R}}^{p}$ from a set of noisy observations $\mathbf{y}\in{\mathbb{R}}^{n}$ under the model $\mathbf{y}=\mathbf{X}{\boldsymbol \beta }+w$, where $\mathbf{X}\in{\mathbb{R}}^{n\times p}$ is the measurement matrix the row of which is drawn from distribution $N(0,{\boldsymbol \varSigma })$. We consider the class of $L_{q}$-regularized least squares (LQLS) given by the formulation $\hat{{\boldsymbol \beta }}(\lambda )=\text{argmin}_{{\boldsymbol \beta }\in{\mathbb{R}}^{p}}\frac{1}{2}\|\mathbf{y}-\mathbf{X}{\boldsymbol \beta }\|^{2}_{2}+\lambda \|{\boldsymbol \beta }\|_{q}^{q}$, where $\|\cdot \|_{q}$  $(0\le q\le 2)$ denotes the $L_{q}$-norm. In the setting $p,n,k\rightarrow \infty $ with fixed $k/p=\epsilon $ and $n/p=\delta $, we derive the asymptotic risk of $\hat{{\boldsymbol \beta }}(\lambda )$ for arbitrary covariance matrix ${\boldsymbol \varSigma }$ that generalizes the existing results for standard Gaussian design, i.e. $X_{ij}\overset{i.i.d}{\sim }N(0,1)$. The results were derived from the non-rigorous replica method. We perform a higher-order analysis for LQLS in the small-error regime in which the first dominant term can be used to determine the phase transition behavior of LQLS. Our results show that the first dominant term does not depend on the covariance structure of ${\boldsymbol \varSigma }$ in the cases $0\le q\lt 1$ and $1\lt q\le 2,$ which indicates that the correlations among predictors only affect the phase transition curve in the case $q=1$ a.k.a. LASSO. To study the influence of the covariance structure of ${\boldsymbol \varSigma }$ on the performance of LQLS in the cases $0\le q\lt 1$ and $1\lt q\le 2$, we derive the explicit formulas for the second dominant term in the expansion of the asymptotic risk in terms of small error. Extensive computational experiments confirm that our analytical predictions are consistent with numerical results.

     
    more » « less
  3. We consider the problem of estimating a $p$ -dimensional vector $\beta$ from $n$ observations $Y=X\beta+W$ , where $\beta_{j}\mathop{\sim}^{\mathrm{i.i.d}.}\pi$ for a real-valued distribution $\pi$ with zero mean and unit variance’ $X_{ij}\mathop{\sim}^{\mathrm{i.i.d}.}\mathcal{N}(0,1)$ , and $W_{i}\mathop{\sim}^{\mathrm{i.i.d}.}\mathcal{N}(0,\ \sigma^{2})$ . In the asymptotic regime where $n/p\rightarrow\delta$ and $p/\sigma^{2}\rightarrow$ snr for two fixed constants $\delta,\ \mathsf{snr}\in(0,\ \infty)$ as $p\rightarrow\infty$ , the limiting (normalized) minimum mean-squared error (MMSE) has been characterized by a single-letter (additive Gaussian scalar) channel. In this paper, we show that if the MMSE function of the single-letter channel converges to a step function, then the limiting MMSE of estimating $\beta$ converges to a step function which jumps from 1 to 0 at a critical threshold. Moreover, we establish that the limiting mean-squared error of the (MSE-optimal) approximate message passing algorithm also converges to a step function with a larger threshold, providing evidence for the presence of a computational-statistical gap between the two thresholds. 
    more » « less
  4. Abstract

    This paper will study almost everywhere behaviors of functions on partition spaces of cardinals possessing suitable partition properties. Almost everywhere continuity and monotonicity properties for functions on partition spaces will be established. These results will be applied to distinguish the cardinality of certain subsets of the power set of partition cardinals.

    The following summarizes the main results proved under suitable partition hypotheses.

    If$\kappa $is a cardinal,$\epsilon < \kappa $,${\mathrm {cof}}(\epsilon ) = \omega $,$\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$and$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$, then$\Phi $satisfies the almost everywhere short length continuity property: There is a club$C \subseteq \kappa $and a$\delta < \epsilon $so that for all$f,g \in [C]^\epsilon _*$, if$f \upharpoonright \delta = g \upharpoonright \delta $and$\sup (f) = \sup (g)$, then$\Phi (f) = \Phi (g)$.

    If$\kappa $is a cardinal,$\epsilon $is countable,$\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$holds and$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$, then$\Phi $satisfies the strong almost everywhere short length continuity property: There is a club$C \subseteq \kappa $and finitely many ordinals$\delta _0, ..., \delta _k \leq \epsilon $so that for all$f,g \in [C]^\epsilon _*$, if for all$0 \leq i \leq k$,$\sup (f \upharpoonright \delta _i) = \sup (g \upharpoonright \delta _i)$, then$\Phi (f) = \Phi (g)$.

    If$\kappa $satisfies$\kappa \rightarrow _* (\kappa )^\kappa _2$,$\epsilon \leq \kappa $and$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$, then$\Phi $satisfies the almost everywhere monotonicity property: There is a club$C \subseteq \kappa $so that for all$f,g \in [C]^\epsilon _*$, if for all$\alpha < \epsilon $,$f(\alpha ) \leq g(\alpha )$, then$\Phi (f) \leq \Phi (g)$.

    Suppose dependent choice ($\mathsf {DC}$),${\omega _1} \rightarrow _* ({\omega _1})^{\omega _1}_2$and the almost everywhere short length club uniformization principle for${\omega _1}$hold. Then every function$\Phi : [{\omega _1}]^{\omega _1}_* \rightarrow {\omega _1}$satisfies a finite continuity property with respect to closure points: Let$\mathfrak {C}_f$be the club of$\alpha < {\omega _1}$so that$\sup (f \upharpoonright \alpha ) = \alpha $. There is a club$C \subseteq {\omega _1}$and finitely many functions$\Upsilon _0, ..., \Upsilon _{n - 1} : [C]^{\omega _1}_* \rightarrow {\omega _1}$so that for all$f \in [C]^{\omega _1}_*$, for all$g \in [C]^{\omega _1}_*$, if$\mathfrak {C}_g = \mathfrak {C}_f$and for all$i < n$,$\sup (g \upharpoonright \Upsilon _i(f)) = \sup (f \upharpoonright \Upsilon _i(f))$, then$\Phi (g) = \Phi (f)$.

    Suppose$\kappa $satisfies$\kappa \rightarrow _* (\kappa )^\epsilon _2$for all$\epsilon < \kappa $. For all$\chi < \kappa $,$[\kappa ]^{<\kappa }$does not inject into${}^\chi \mathrm {ON}$, the class of$\chi $-length sequences of ordinals, and therefore,$|[\kappa ]^\chi | < |[\kappa ]^{<\kappa }|$. As a consequence, under the axiom of determinacy$(\mathsf {AD})$, these two cardinality results hold when$\kappa $is one of the following weak or strong partition cardinals of determinacy:${\omega _1}$,$\omega _2$,$\boldsymbol {\delta }_n^1$(for all$1 \leq n < \omega $) and$\boldsymbol {\delta }^2_1$(assuming in addition$\mathsf {DC}_{\mathbb {R}}$).

     
    more » « less
  5. Abstract We formulate general conditions which imply that ${\mathcal L}(X,Y)$ , the space of operators from a Banach space X to a Banach space Y , has $2^{{\mathfrak {c}}}$ closed ideals, where ${\mathfrak {c}}$ is the cardinality of the continuum. These results are applied to classical sequence spaces and Tsirelson-type spaces. In particular, we prove that the cardinality of the set ofclosed ideals in ${\mathcal L}\left (\ell _p\oplus \ell _q\right )$ is exactly $2^{{\mathfrak {c}}}$ for all $1 more » « less