Geo-obfuscation is a location privacy protection mechanism used by mobile users to conceal their precise locations when reporting location data, and it has been widely used to protect the location privacy of workers in spatial crowdsourcing (SC). However, this technique introduces inaccuracies in the reported locations, raising the question of how to control the quality loss that results from obfuscation in SC services. Prior studies have addressed this issue in time-insensitive SC settings, where some degree of quality degradation can be accepted and the locations can be expressed with less precision, which, however, is inadequate for time-sensitive SC. In this paper, we aim to minimize the quality loss caused by geo-obfuscation in time-sensitive SC applications. To this end, we model workers’ mobility on a fine-grained location field and constrain each worker’s obfuscation range to a set of peer locations, which have similar traveling costs to the destination as the actual location. We apply a linear programming (LP) framework to minimize the quality loss while satisfying both peer location constraints and geo-indistinguishability, a location privacy criterion extended from differential privacy. By leveraging the constraint features of the formulated LP, we enhance the time efficiency of solving LP through the geo-indistinguishability constraint reduction and the column generation algorithm. Using both simulation and real-world experiments, we demonstrate that our approach can reduce the quality loss of SC applications while protecting workers’ location privacy.
more »
« less
This content will become publicly available on April 1, 2026
Time-Efficient Locally Relevant Geo-Location Privacy Protection
Geo-obfuscation serves as a location privacy protection mechanism (LPPM), enabling mobile users to share obfuscated locations with servers, rather than their exact locations. This method can protect users’ location privacy when data breaches occur on the server side since the obfuscation process is irreversible. To reduce the utility loss caused by data obfuscation, linear programming (LP) is widely employed, which, however, might suffer from a polynomial explosion of decision variables, rendering it impractical in largescale geo-obfuscation applications. In this paper, we propose a new LPPM, called Locally Relevant Geo-obfuscation (LR-Geo), to optimize geo-obfuscation using LP in a time-efficient manner. This is achieved by confining the geoobfuscation calculation for each user exclusively to the locally relevant (LR) locations to the user’s actual location. Given the potential risk of LR locations disclosing a user’s actual whereabouts, we enable users to compute the LP coefficients locally and upload them only to the server, rather than the LR locations. The server then solves the LP problem based on the received coefficients. Furthermore, we refine the LP framework by incorporating an exponential obfuscation mechanism to guarantee the indistinguishability of obfuscation distribution across multiple users. Based on the constraint structure of the LP formulation, we apply Benders’ decomposition to further enhance computational efficiency. Our theoretical analysis confirms that, despite the geo-obfuscation being calculated independently for each user, it still meets geo-indistinguishability constraints across multiple users with high probability. Finally, the experimental results based on a real-world dataset demonstrate that LR-Geo outperforms existing geo-obfuscation methods in computational time, data utility, and privacy preservation.
more »
« less
- Award ID(s):
- 2313866
- PAR ID:
- 10593094
- Publisher / Repository:
- Privacy Enhancing Technologies Symposium
- Date Published:
- Journal Name:
- Proceedings on Privacy Enhancing Technologies
- Volume:
- 2025
- Issue:
- 2
- ISSN:
- 2299-0984
- Page Range / eLocation ID:
- 5 to 22
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The rapid growth of GPS technology and mobile devices has led to a massive accumulation of location data, bringing considerable benefits to individuals and society. One of the major usages of such data is travel time prediction, a typical service provided by GPS navigation devices and apps. Meanwhile, the constant collection and analysis of the individual location data also pose unprecedented privacy threats. We leverage the notion of geo-indistinguishability, an extension of differential privacy to the location privacy setting, and propose a procedure for privacy-preserving travel time prediction without collecting actual individual GPS trace data. We propose new concepts to examine the impact of the geo-indistinguishability sanitization on the usefulness of GPS traces and provide analytical and experimental utility analysis for privacy-preserving travel time prediction. We also propose new metrics to measure the adversary error in learning individual GPS traces from the collected sanitized data. Our experiment results suggest that the proposed procedure provides travel time analysis with satisfactory accuracy at reasonably small privacy costs.more » « less
-
Vincent Poor and Zhu Han (Ed.)Recently, blockchain has received much attention from the mobility-centric Internet of Things (IoT). It is deemed the key to ensuring the built-in integrity of information and security of immutability by design in the peer-to-peer network (P2P) of mobile devices. In a permissioned blockchain, the authority of the system has control over the identities of its users. Such information can allow an ill-intentioned authority to map identities with their spatiotemporal data, which undermines the location privacy of a mobile user. In this paper, we study the location privacy preservation problem in the context of permissioned blockchain-based IoT systems under three conditions. First, the authority of the blockchain holds the public and private key distribution task in the system. Second, there exists a spatiotemporal correlation between consecutive location-based transactions. Third, users communicate with each other through short-range communication technologies such that it constitutes a proof of location (PoL) on their actual locations. We show that, in a permissioned blockchain with an authority and a presence of a PoL, existing approaches cannot be applied using a plug-and-play approach to protect location privacy. In this context, we propose BlockPriv, an obfuscation technique that quantifies, both theoretically and experimentally, the relationship between privacy and utility in order to dynamically protect the privacy of sensitive locations in the permissioned blockchain.more » « less
-
We consider the problem of population density estimation based on location data crowdsourced from mobile devices, using kernel density estimation (KDE). In a conventional, centralized setting, KDE requires mobile users to upload their location data to a server, thus raising privacy concerns. Here, we propose a Federated KDE framework for estimating the user population density, which not only keeps location data on the devices but also provides probabilistic privacy guarantees against a malicious server that tries to infer users' location. Our approach Federated random Fourier feature (RFF) KDE leverages a random feature representation of the KDE solution, in which each user's information is irreversibly projected onto a small number of spatially delocalized basis functions, making precise localization impossible while still allowing population density estimation. We evaluate our method on both synthetic and real-world datasets, and we show that it achieves a better utility (estimation performance)-vs-privacy (distance between inferred and true locations) tradeoff, compared to state-of-the-art baselines (e.g., GeoInd). We also vary the number of basis functions per user, to further improve the privacy-utility trade-off, and we provide analytical bounds on localization as a function of areal unit size and kernel bandwidth.more » « less
-
In Location-Based Services (LBS), users are required to disclose their precise location information to query a service provider. An untrusted service provider can abuse those queries to infer sensitive information on a user through spatio-temporal and historical data analyses. Depicting the drawbacks of existing privacy-preserving approaches in LBS, we propose a user-centric obfuscation approach, called KLAP, based on the three fundamental obfuscation requirements: k number of locations, l-diversity, and privacy area preservation. Considering user's sensitivity to different locations and utilizing Real-Time Traffic Information (RTTI), KLAP generates a convex Concealing Region (CR) to hide user's location such that the locations, forming the CR, resemble similar sensitivity and are resilient against a wide range of inferences in spatio-temporal domain. For the first time, a novel CR pruning technique is proposed to significantly improve the delay between successive CR submissions. We carry out an experiment with a real dataset to show its effectiveness for sporadic, frequent, and continuous service use cases.more » « less
An official website of the United States government
