skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Riverine Discharge and Phytoplankton Biomass Control Dissolved and Particulate Organic Matter Dynamics over Spatial and Temporal Scales in the Neuse River Estuary, North Carolina
Estuaries function as important transporters, transformers, and producers of organic matter (OM). Along the freshwater to saltwater gradient, the composition of OM is influenced by physical and biogeochemical processes that change spatially and temporally, making it difficult to constrain OM in these ecosystems. In addition, many of the environmental parameters (temperature, precipitation, riverine discharge) controlling OM are expected to change due to climate change. To better understand the environmental drivers of OM quantity (concentration) and quality (absorbance, fluorescence), we assessed both dissolved OM (DOM) and particulate OM (POM) spatially, along the freshwater to saltwater gradient and temporally, for a full year. We found seasonal differences in salinity throughout the estuary due to elevated riverine discharge during the late fall to early spring, with corresponding changes to OM quantity and quality. Using redundancy analysis, we found DOM covaried with salinity (adjusted r2 = 0.35, 0.41 for surface and bottom), indicating terrestrial sources of DOM in riverine discharge were the dominant DOM sources throughout the estuary, while POM covaried with environmental indictors of terrestrial sources (turbidity, adjusted r2 = 0.16, 0.23 for surface and bottom) as well as phytoplankton biomass (chlorophyll-a, adjusted r2 = 0.25, 0.14 for surface and bottom). Responses in OM quantity and quality observed during the period of elevated discharge were similar to studies assessing OM quality following extreme storm events suggesting that regional changes in precipitation, as predicted by climate change, will be as important in changing the estuarine OM pool as episodic storm events in the future.  more » « less
Award ID(s):
1753639
PAR ID:
10286088
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Estuaries and Coasts
ISSN:
1559-2723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dissolved organic matter (DOM) is the foundation of the microbial loop and plays an important role in estuarine water quality and ecosystem metabolism. Because estuaries are influenced by DOM with different sources and composition, changing hydrologic regimes, and diverse microbial community assemblages, the biological fate of DOM (i.e., microbial degradation) differs across spatiotemporal scales and between DOM pools. To better understand controls on DOM degradation, we characterized the biogeochemical and physical conditions of the York River Estuary (YRE), a sub-estuary of the Chesapeake Bay in southeast Virginia (USA), during October 2018 and February, April, and July 2019. We then evaluated how these conditions influenced the degradation of dissolved organic carbon (DOC) and nitrogen (DON) and chromophoric dissolved organic matter (CDOM) by conducting parallel dark incubations of surface water collected along the YRE. Compared to other sampling dates, DOC reactivity (ΔDOC (%)) was over two-fold higher in October when freshwater discharge was lower, temperatures were warmer, and autochthonous, aquatic sources of DOC dominated. ΔDOC (%) was near zero when allochthonous, terrestrial sources of DOC were more abundant and when temperatures were cooler during higher discharge periods in February when precipitation in the Chesapeake Bay region was anomalously high. DON was up to six times less reactive than DOC and was sometimes produced during the incubations whereas ΔCDOM (%) was highly variable between sampling periods. Like ΔDOC (%), spatiotemporal patterns in ΔDON (%) were controlled primarily by hydrology and DOM source and composition. Our results show that higher freshwater discharge associated with prolonged wet periods decreased estuarine flushing time and increased the delivery of allochthonous DOM derived from terrestrial sources into coastal waters, resulting in lower rates of DOM degradation especially under cool conditions. While these findings provide evidence for seasonal variation in DOM degradation, shifting environmental conditions (e.g., increasing temperatures and precipitation) due to climate change may also have interactive effects on the magnitude and composition of DOM exported to estuaries and its subsequent reactivity. 
    more » « less
  2. Abstract Estuaries are among the most productive ecosystems on Earth, yet they are at risk in high-latitude regions due to climate-driven effects on the connected terrestrial and marine realms. Northern Hemisphere warming exceeds the global average and accelerates the melting of glaciers. As a result, the magnitude of freshwater discharge into estuaries may increase during the peak in glacial meltwater, ultimately affecting the riverine flux of organic matter (OM) from the land to coastal environments and food webs within. We investigated the extent to which terrestrial OM subsidizes nearshore food webs in northern Gulf of Alaska watersheds and if differences in the relative proportion of terrestrial versus marine OM supporting these food webs are explained by watershed glacial cover and/or by seasonal glacial discharge regimes. A stable isotope mixing model was employed to determine the contribution of marine (phytoplankton, macroalgae) and terrestrial (vascular plant) sources to the diets of grazing/detritivore and filter/suspension-feeding coastal invertebrates at the outflows of watersheds of varying glacial influence and across three distinct discharge periods. Additionally, a distance-based redundancy analysis was conducted to investigate the effects of watershed-characteristic (e.g., slope, vegetation cover) sourcing and transport of terrestrial OM on consumer diets. The diets of both feeding groups were predominantly marine (> 90%) and varied little among estuarine study sites at watersheds of different glacial cover or glacial discharge periods. Our findings suggest that terrestrial OM is not readily used by nearshore food webs in this productive study system, presumably due to the high quantity and quality of available marine OM. 
    more » « less
  3. Abstract Dissolved organic matter (DOM) is a large and complex mixture of compounds with source inputs that differ with location, season, and environmental conditions. Here, we investigated drivers of DOM composition changes in a marsh‐dominated estuary off the southeastern United States. Monthly water samples were collected at a riverine and estuarine site from September 2015 to September 2016, and bulk, optical, and molecular analyses were conducted on samples before and after dark incubations. Results showed that river discharge was the primary driver changing the DOM composition at the mouth of the Altamaha River. For discharge higher than ~150 m3/s, dissolved organic carbon (DOC) concentrations and the terrigenous character of the DOM increased approximately linearly with river flow. For low discharge conditions, a clear signature of salt marsh‐derived compounds was observed in the river. At the head of Sapelo Sound, changes in DOM composition were primarily driven by river discharge and possibly by summer algae blooms. Microbial consumption of DOC was larger during periods of high discharge at both sites, potentially due to the higher mobilization and influx of fresh material to the system. The Georgia coast was hit by Hurricane Matthew in October 2016, which resulted in a large input of carbon to the estuary. The DOC concentration was ~2 times higher and DOM composition was more aromatic with a stronger terrigenous signature compared to the seasonal maximum observed earlier in the year during peak river discharge conditions. This suggests that extreme events notably impact DOM quantity and quality in estuarine regions. 
    more » « less
  4. Resource quantity (i.e. organic matter; OM) is a main driver of the prevailing energy pathway in freshwater food webs. The OM pool is mainly composed of allochthonous material, a primary resource for freshwater consumers. Contrastingly, small amounts of autochthonous OM (i.e. algae) can subsidize aquatic communities due to its higher nutritional quality. To date, there is no consensus about the relative importance of allochthonous and autochthonous OM for freshwater food webs or the environmental factors driving their relative importance. We fill this gap by evaluating the relative importance of allochthonous and autochthonous OM sources for freshwater food webs on a global scale through a meta‐analytical approach. We gathered the outcome of stable isotope mixing models of 2789 cases from 58 published studies and calculated a response ratio between the mean contributions of allochthonous and autochthonous OM for freshwater consumers. Using mixed‐effect models and a multimodel inference approach, we tested the influence of latitude, habitat type, ecosystem size, climate and terrestrial productivity over the response ratio. The relative contribution of autochthonous OM was higher in lotic systems. In lentic systems, increasing terrestrial productivity increased the relative contribution of autochthonous OM, while increasing precipitation and temperature seasonality reduced this relative contribution. We suggested that factors increasing terrestrial productivity might also boost autochthonous OM in these systems, while precipitation increases the transport of allochthonous OM to freshwater habitats. We did not find any relationship between environmental factors and the relative contribution of autochthonous OM for lotic systems. We concluded that the relative contribution of allochthonous and autochthonous energy sources to freshwater food webs differs between lotic and lentic ecosystems and it is dependent on multiple environmental factors. 
    more » « less
  5. Abstract Increasing glacial discharge can lower salinity and alter organic matter (OM) supply in fjords, but assessing the biogeochemical effects of enhanced freshwater fluxes requires understanding of microbial interactions with OM across salinity gradients. Here, we examined microbial enzymatic capabilities—in bulk waters (nonsize‐fractionated) and on particles (≥ 1.6μm)—to hydrolyze common OM constituents (peptides, glucose, polysaccharides) along a freshwater–marine continuum within Tyrolerfjord‐Young Sound. Bulk peptidase activities were up to 15‐fold higher in the fjord than in glacial rivers, whereas bulk glucosidase activities in rivers were twofold greater, despite fourfold lower cell counts. Particle‐associated glucosidase activities showed similar trends by salinity, but particle‐associated peptidase activities were up to fivefold higher—or, for several peptidases, only detectable—in the fjord. Bulk polysaccharide hydrolase activities also exhibited freshwater–marine contrasts: xylan hydrolysis rates were fivefold higher in rivers, while chondroitin hydrolysis rates were 30‐fold greater in the fjord. Contrasting enzymatic patterns paralleled variations in bacterial community structure, with most robust compositional shifts in river‐to‐fjord transitions, signifying a taxonomic and genetic basis for functional differences in freshwater and marine waters. However, distinct dissolved organic matter (DOM) pools across the salinity gradient, as well as a positive relationship between several enzymatic activities and DOM compounds, indicate that DOM supply exerts a more proximate control on microbial activities. Thus, differing microbial enzymatic capabilities, community structure, and DOM composition—interwoven with salinity and water mass origins—suggest that increased meltwater may alter OM retention and processing in fjords, changing the pool of OM supplied to coastal Arctic microbial communities. 
    more » « less