skip to main content

Title: Global and local drivers of the relative importance of allochthonous and autochthonous energy sources to freshwater food webs

Resource quantity (i.e. organic matter; OM) is a main driver of the prevailing energy pathway in freshwater food webs. The OM pool is mainly composed of allochthonous material, a primary resource for freshwater consumers. Contrastingly, small amounts of autochthonous OM (i.e. algae) can subsidize aquatic communities due to its higher nutritional quality. To date, there is no consensus about the relative importance of allochthonous and autochthonous OM for freshwater food webs or the environmental factors driving their relative importance. We fill this gap by evaluating the relative importance of allochthonous and autochthonous OM sources for freshwater food webs on a global scale through a meta‐analytical approach. We gathered the outcome of stable isotope mixing models of 2789 cases from 58 published studies and calculated a response ratio between the mean contributions of allochthonous and autochthonous OM for freshwater consumers. Using mixed‐effect models and a multimodel inference approach, we tested the influence of latitude, habitat type, ecosystem size, climate and terrestrial productivity over the response ratio. The relative contribution of autochthonous OM was higher in lotic systems. In lentic systems, increasing terrestrial productivity increased the relative contribution of autochthonous OM, while increasing precipitation and temperature seasonality reduced this relative contribution. We suggested that factors increasing terrestrial productivity might also boost autochthonous OM in these systems, while precipitation increases the transport of allochthonous OM to freshwater habitats. We did not find any relationship between environmental factors and the relative contribution of autochthonous OM for lotic systems. We concluded that the relative contribution of allochthonous and autochthonous energy sources to freshwater food webs differs between lotic and lentic ecosystems and it is dependent on multiple environmental factors.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tracing the flow of dietary energy sources, especially in systems with a high degree of omnivory, is an ongoing challenge in ecology. In aquatic systems, one of the persistent challenges is in differentiating between autochthonous and allochthonous energy sources to top consumers. Bulk carbon stable isotope values of aquatic and terrestrial prey often overlap, making it difficult to delineate dietary energy pathways in food webs with high allochthonous prey subsidies, such as in many northern temperate waterbodies. We conducted a feeding experiment to explore how fatty acid stable isotopes may overcome the challenge of partitioning autochthonous and allochthonous energy pathways in aquatic consumers. We fed hatchery‐reared Arctic Char (Salvelinus alpinus) diets of either benthic invertebrates, terrestrial earthworms, or a mixture of both. We then compared how the stable carbon isotopes of fatty acids (δ13CFA) distinguished between diet items and respective treatments inS. alpinusliver and muscle tissues, relative to bulk stable isotopes and fatty acid profiles. Although a high degree of variability of fatty acid stable carbon isotope values was present in all three measures, our results suggest that the ability of this method to overcome the challenges of bulk stable isotopes may be overstated. Finally, our study highlights the importance of further experimental investigation, and consideration of physiological and biochemical processes when employing this emerging method.

    more » « less
  2. Abstract

    Most terrestrial allochthonous organic matter enters river networks through headwater streams during high flow events. In headwaters, allochthonous inputs are substantial and variable, but become less important in streams and rivers with larger watersheds. As allochthonous dissolved organic matter (DOM) moves downstream, the proportion of less aromatic organic matter with autochthonous characteristics increases. How environmental factors converge to control this transformation of DOM at a continental scale is less certain. We hypothesized that the amount of time water has spent travelling through surface waters of inland systems (streams, rivers, lakes, and reservoirs) is correlated to DOM composition. To test this hypothesis, we used established river network scaling relationships to predict relative river network flow‐weighted travel time (FWTT) of water for 60 stream and river sites across the contiguous United States (3090 discrete samples over 10 water years). We estimated lentic contribution to travel times with upstream in‐network lake and reservoir volume. DOM composition was quantified using ultraviolet and visible absorption and fluorescence spectroscopy. A combination of FWTT and lake and reservoir volume was the best overall predictor of DOM composition among models that also incorporated discharge, specific discharge, watershed area, and upstream channel length. DOM spectral slope ratio (R2 = 0.77) and Freshness Index (R2 = 0.78) increased and specific ultraviolet absorbance at 254 nm (R2 = 0.68) and Humification Index (R2 = 0.44) decreased across sites as a function of FWTT and upstream lake volume. This indicates autochthonous‐like DOM becomes continually more dominant in waters with greater FWTT. We assert that river FWTT can be used as a metric of the continuum of DOM composition from headwaters to rivers. The nature of the changes to DOM composition detected suggest this continuum is driven by a combination of photo‐oxidation, biological processes, hydrologically varying terrestrial subsidies, and aged groundwater inputs.

    more » « less
  3. Abstract

    Food webs are complex ecological networks that reveal species interactions and energy flow in ecosystems. Prevailing ecological knowledge on forested streams suggests that their food webs are based on allochthonous carbon, driven by a constant supply of organic matter from adjacent vegetation and limited primary production due to low light conditions. Extreme climatic disturbances can disrupt these natural ecosystem dynamics by altering resource availability, which leads to changes in food web structure and functioning. Here, we quantify the response of stream food webs to two major hurricanes (Irma and María, Category 5 and 4, respectively) that struck Puerto Rico in September 2017. Within two tropical forested streams (first and second order), we collected ecosystem and food web data 6 months prior to the hurricanes and 2, 9, and 18 months afterward. We assessed the structural (e.g., canopy) and hydrological (e.g., discharge) characteristics of the ecosystem and monitored changes in basal resources (i.e., algae, biofilm, and leaf litter), consumers (e.g., aquatic invertebrates, riparian consumers), and applied Layman's community‐wide metrics using the isotopic composition of13C and15N. Continuous stream discharge measurements indicated that the hurricanes did not cause an extreme hydrological event. However, the sixfold increase in canopy openness and associated changes in litter input appeared to trigger an increase in primary production. These food webs were primarily based on terrestrially derived carbon before the hurricanes, but most taxa (includingAtyaandXiphocarisshrimp, the consumers with highest biomass) shifted their food source to autochthonous carbon within 2 months of the hurricanes. We also found evidence that the hurricanes dramatically altered the structure of the food web, resulting in shorter (i.e., smaller food‐chain length), narrower (i.e., lower diversity of carbon sources) food webs, as well as increased trophic species packing. This study demonstrates how hurricane disturbance can alter stream food webs, changing the trophic base from allochthonous to autochthonous resources via changes in the physical environment (i.e., canopy defoliation). As hurricanes become more frequent and severe due to climate change, our findings greatly contribute to our understanding of the mechanisms that maintain forested stream trophic interactions amidst global change.

    more » « less
  4. Abstract

    The extent to which terrestrial organic matter supports aquatic consumers remains uncertain because factors regulating resource flows are poorly understood. We sampled 12 lakes throughout the Sierra Nevada (California, USA) spanning large gradients in elevation and size to evaluate how watershed attributes and lake morphometry influence resource flows to lake carbon pools and zooplankton. We found that the size and composition of carbon pools in lakes were often more strongly determined by watershed or lake features rather than by elevational position. Using three different tracers of resource origin (δ13C, Δ14C, C:N ratio), we found terrestrial contributions to most lake resource pools (dissolved organic carbon, particulate organic matter (POM), sediments) and pelagic consumers (zooplankton) were more strongly related to local‐scale watershed features such as vegetation cover or watershed area: lake area rather than to elevation. Landscape patterns in multiple tracers indicated consistent contribution of within‐lake C sources to bulk resource pools across elevations (POM, sediments, zooplankton). δ13C‐enrichment of lake C pools and overlap with δ13C of terrestrial resources can arise due to reduced fractionation of13C by phytoplankton under CO2limitation, therefore we recommend careful consideration of potential environmental drivers when interpreting among‐lake patterns in δ13C. Our findings emphasize the importance of local‐scale variation in mediating terrestrial contributions to lake food webs.

    more » « less
  5. Abstract

    Winters are changing rapidly across the globe but the implications for aquatic productivity and food webs are not well understood. In addition, the degree to which winter dynamics in aquatic systems respond to large‐scale climate versus ecosystem‐level factors is unclear but important for understanding and managing potential changes. We used a unique winter data set from the Upper Mississippi River System to explore spatial and temporal patterns in phytoplankton biomass (chlorophylla, CHL) and associated environmental covariates across 25 years and ∼1,500 river km. To assess the role of regional climate versus site‐specific drivers of winter CHL, we evaluated whether there were coherent long‐term CHL dynamics from north to south and across lotic‐lentic areas. We then estimated the degree to which these patterns were associated with climate variability (i.e., the Multivariate El Nino‐Southern Oscillation Index), winter severity (freezing degree days), river discharge, or site‐specific environmental variables (ice depth, snow depth, and nutrient concentrations). We found that winter CHL was typically highest in ice‐free reaches and backwater lakes, occasionally exceeding summer values. We did not find highly synchronous CHL dynamics across the basin, but instead show that temporal trends were independent among river reaches and lotic‐lentic areas of the river. Moreover, after accounting for these spatial dynamics, we found that CHL was most responsive to winter air temperature, being consistently higher in years with warmer winters across the basin. These results indicate that although productivity dynamics are highly dynamic within large river ecosystems, changes in the duration and severity of winter may uniformly increase wintertime productivity.

    more » « less