skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phase transitions and assortativity in models of gene regulatory networks evolved under different selection processes
We study a simplified model of gene regulatory network evolution in which links (regulatory interactions) are added via various selection rules that are based on the structural and dynamical features of the network nodes (genes). Similar to well-studied models of ‘explosive’ percolation, in our approach, links are selectively added so as to delay the transition to large-scale damage propagation, i.e. to make the network robust to small perturbations of gene states. We find that when selection depends only on structure, evolved networks are resistant to widespread damage propagation, even without knowledge of individual gene propensities for becoming ‘damaged’. We also observe that networks evolved to avoid damage propagation tend towards disassortativity (i.e. directed links preferentially connect high degree ‘source’ genes to low degree ‘target’ genes and vice versa). We compare our simulations to reconstructed gene regulatory networks for several different species, with genes and links added over evolutionary time, and we find a similar bias towards disassortativity in the reconstructed networks.  more » « less
Award ID(s):
1632976
PAR ID:
10286163
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of The Royal Society Interface
Volume:
18
Issue:
177
ISSN:
1742-5662
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gossmann, Toni (Ed.)
    Abstract Understanding and predicting the relationships between genotype and phenotype is often challenging, largely due to the complex nature of eukaryotic gene regulation. A step towards this goal is to map how phenotypic diversity evolves through genomic changes that modify gene regulatory interactions. Using the Prairie Rattlesnake (Crotalus viridis) and related species, we integrate mRNA-seq, proteomic, ATAC-seq and whole genome resequencing data to understand how specific evolutionary modifications to gene regulatory network components produce differences in venom gene expression. Through comparisons within and between species, we find a remarkably high degree of gene expression and regulatory network variation across even a shallow level of evolutionary divergence. We use these data to test hypotheses about the roles of specific trans-factors and cis-regulatory elements, how these roles may vary across venom genes and gene families, and how variation in regulatory systems drive diversity in venom phenotypes. Our results illustrate that differences in chromatin and genotype at regulatory elements play major roles in modulating expression. However, we also find that enhancer deletions, differences in transcription-factor expression, and variation in activity of the insulator protein CTCF also likely impact venom phenotypes. Our findings provide insight into the diversity and gene-specificity of gene regulatory features and highlight the value of comparative studies to link gene regulatory network variation to phenotypic variation. 
    more » « less
  2. Abstract Although similar developmental regulatory networks can produce diverse phenotypes, different networks can also produce the same phenotype. In theory, as long as development can produce an acceptable end phenotype, the details of the process could be shielded from selection, leading to the possibility of developmental system drift, where the developmental mechanisms underlying a stable phenotype continue to evolve. Many examples exist of divergent developmental genetics underlying conserved traits. However, studies that elucidate how these differences arose and how other features of development accommodated them are rarer. InCaenorhabditis elegans, six GATA-type transcription factors (GATA factors) comprise the zygotic part of the endoderm specification network. Here we show that the core of this network - five of the genes - originated within the genus during a brief but explosive radiation of this gene family and that at least three of them evolved from a single ancestral gene with at least two different spatio-temporal expression patterns. Based on analyses of their evolutionary history, gene structure, expression, and sequence, we explain how these GATA factors were integrated into this network. Our results show how gene duplication fueled the developmental system drift of the endoderm network in a phylogenetically brief period in developmentally canalized worms. 
    more » « less
  3. null (Ed.)
    Changes in cis-regulatory elements play important roles in adaptation and phenotypic evolution. However, their contribution to metabolic adaptation of organisms is less understood. Here we have utilized a unique vertebrate model, Astyanax mexicanus, different morphotypes of which survive in nutrient-rich surface and nutrient-deprived cave water to uncover gene regulatory networks in metabolic adaptation. We performed genome-wide epigenetic profiling in the liver tissue of one surface and two independently derived cave populations. We find that many cis-regulatory elements differ in their epigenetic status/chromatin accessibility between surface fish and cavefish, while the two independently derived cave populations have evolved remarkably similar regulatory signatures. These differentially accessible regions are associated with genes of key pathways related to lipid metabolism, circadian rhythm and immune system that are known to be altered in cavefish. Using in vitro and in vivo functional testing of the candidate cis-regulatory elements, we find that genetic changes within them cause quantitative expression differences. We characterized one cis-regulatory element in the hpdb gene and found a genomic deletion in cavefish that abolishes binding of the transcriptional repressor IRF2 in vitro and derepresses enhancer activity in reporter assays. Genetic experiments further validated a cis-mediated role of the enhancer and suggest a role of this deletion in the upregulation of hpdb in wild cavefish populations. Selection of this mutation in multiple independent cave populations supports its importance in the adaptation to the cave environment, providing novel molecular insights into the evolutionary trade-off between loss of pigmentation and adaptation to a food-deprived cave environment. 
    more » « less
  4. Fu, Feng (Ed.)
    With the recent availability of tissue-specific gene expression data, e.g., provided by the GTEx Consortium, there is interest in comparing gene co-expression patterns across tissues. One promising approach to this problem is to use a multilayer network analysis framework and perform multilayer community detection. Communities in gene co-expression networks reveal groups of genes similarly expressed across individuals, potentially involved in related biological processes responding to specific environmental stimuli or sharing common regulatory variations. We construct a multilayer network in which each of the four layers is an exocrine gland tissue-specific gene co-expression network. We develop methods for multilayer community detection with correlation matrix input and an appropriate null model. Our correlation matrix input method identifies five groups of genes that are similarly co-expressed in multiple tissues (a community that spans multiple layers, which we call a generalist community) and two groups of genes that are co-expressed in just one tissue (a community that lies primarily within just one layer, which we call a specialist community). We further found gene co-expression communities where the genes physically cluster across the genome significantly more than expected by chance (on chromosomes 1 and 11). This clustering hints at underlying regulatory elements determining similar expression patterns across individuals and cell types. We suggest thatKRTAP3-1,KRTAP3-3, andKRTAP3-5share regulatory elements in skin and pancreas. Furthermore, we find thatCELA3AandCELA3Bshare associated expression quantitative trait loci in the pancreas. The results indicate that our multilayer community detection method for correlation matrix input extracts biologically interesting communities of genes. 
    more » « less
  5. Ruvinsky, Ilya (Ed.)
    Abstract Developmental polyphenism, the ability to switch between phenotypes in response to environmental variation, involves the alternating activation of environmentally sensitive genes. Consequently, to understand how a polyphenic response evolves requires a comparative analysis of the components that make up environmentally sensitive networks. Here, we inferred coexpression networks for a morphological polyphenism, the feeding-structure dimorphism of the nematode Pristionchus pacificus. In this species, individuals produce alternative forms of a novel trait—moveable teeth, which in one morph enable predatory feeding—in response to environmental cues. To identify the origins of polyphenism network components, we independently inferred coexpression modules for more conserved transcriptional responses, including in an ancestrally nonpolyphenic nematode species. Further, through genome-wide analyses of these components across the nematode family (Diplogastridae) in which the polyphenism arose, we reconstructed how network components have changed. To achieve this, we assembled and resolved the phylogenetic context for five genomes of species representing the breadth of Diplogastridae and a hypothesized outgroup. We found that gene networks instructing alternative forms arose from ancestral plastic responses to environment, specifically starvation-induced metabolism and the formation of a conserved diapause (dauer) stage. Moreover, loci from rapidly evolving gene families were integrated into these networks with higher connectivity than throughout the rest of the P. pacificus transcriptome. In summary, we show that the modular regulatory outputs of a polyphenic response evolved through the integration of conserved plastic responses into networks with genes of high evolutionary turnover. 
    more » « less