skip to main content

Title: Influence of multi-walled carbon nanotubes on the hydration products of ordinary Portland cement paste
We elucidate the mechanisms by which multi-walled carbon nanotubes (MWCNTs) influence the microstructure, fracture behavior, and hydration of cement paste. We disperse MWCNTs using a multi-step approach that involves high-energy pre-dispersion using ultrasonic energy followed by low-energy dispersion using un-hydrated cement particles. In turn, the low-energy dispersion step involves high-shear mixing and mechanical stirring. High-resolution environmental scanning electron microscopy of cement+0.2 wt% MWCNT, cement+0.5 wt% MWNCT, and of cement+1 wt% MWCNT show that MWCNTs bridge air voids, thereby refining the pore size and strengthening the C-S-H matrix. The fracture toughness increased by 9.38% with the addition of 0.2 wt% multi-walled carbon nanotubes, and by 14.06% with the addition of 0.5 wt% multi-walled carbon nanotubes and ligament bridging was the dominant toughening mechanism. Moreover, for all reinforcement levels, MWCNTs induced a conversion of low-density C-S-H into high-density C-S-H along with a drastic drop in the capillary porosity: adding 0.1–0.5 wt% MWCNT resulted in a 200% increase in the volume fraction of high-density C-S-H. Thus, our experiments show that MWCNT enhances the mechanical properties and transport properties by: (i) promoting high-density C-S-H formation, (ii) promoting calcium hydroxide formation, (iii) filling microscopic air voids, (iv) reducing the capillary porosity, (v) increasing the fraction more » of small gel pores (1.2–2 nm in size), and (vi) by bridging microcracks. « less
Award ID(s):
Publication Date:
Journal Name:
Cement and concrete research
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. In recent years, carbon nanofibers have been investigated as a suitable reinforcement for cementitious composites to yield novel multifunctional materials with improved mechanical, electrical, magnetic, and self-sensing behavior. Despite several studies, the interactions between carbon nanofibers and Portland cement hydration products are not fully understood, with significant implications for the mechanical response and the durability at the macroscopic lengthscale. Thus, the research objective is to investigate the influence of carbon nanofibers on the nanostructure and on the distribution of hydration products within Portland cement paste. Portland cement w/c = 0.44 specimens reinforced with 0.0 wt%, 0.1 wt%, and 0.5 wt%more »CNF by mass fraction of cement are cast using a novel synthesis procedure. A uniform dispersion of carbon nanofibers (CNF) via a multi-step approach: after pre-dispersing carbon nanofibers using ultrasonic energy, the carbon nanofibers are further dispersed using un-hydrated cement particles in high shear mixing and mechanical stirring steps. High-resolution scanning electron microscopy analysis shows that carbon nanofibers fill nanopores and connect calcium–silicate hydrates (C–S–H) grains. Grid nano-indentation testing shows that Carbon nanofibers influence the probability distribution function of the local packing density by inducing a shift towards higher values, η = 0.76–0.93. Statistical deconvolution analysis shows that carbon nanofibers result in an increase in the fraction of high-density C–S–H by 6.7% from plain cement to cement + 0.1 wt% CNF and by 10.7% from plain cement to cement + 0.5 wt% CNF. Moreover, CNF lead to an increase in the C–S–H gel porosity and a decrease in both the capillary porosity and the total porosity. Based on scratch testing, adding 0.1 wt% CNF yields a 4.5% increase in fracture toughness and adding 0.5 wt% CNF yields a 7.6% increase in fracture toughness. Finally, micromechanical modelling predicts an increase of respectively 5.97% and 21.78% in the average Young’s modulus following CNF modification at 0.1 wt% CNF and 0.5 wt% CNF levels.« less
  2. Cement is the most widely consumed material globally, with the cement industry accounting for 8% of human-caused greenhouse gas emissions. Aiming for cement composites with a reduced carbon footprint, this study investigates the potential of nanomaterials to improve mechanical characteristics. An important question is to increase the fraction of carbon-based nanomaterials within cement matrices while controlling the microstructure and enhancing the mechanical performance. Specifically, this study investigates the fracture response of Portland cement reinforced with 1D and 2D carbon-based nanomaterials, such as carbon nanofibers, multiwalled carbon nanotubes, helical carbon nanotubes, and graphene oxide nanoplatelets. Novel processing routes are shown tomore »incorporate 0.1–0.5 wt% of nanomaterials into cement using a quadratic distribution of ultrasonic energy. Scratch testing is used to probe the fracture response by pushing a sphero-conical probe against the surface of the material under a linearly increasing vertical force. Fracture toughness is then computed using a nonlinear fracture mechanics model. Nanomaterials are shown to bridge nanoscale air voids, leading to pore refinement, and a decrease in the porosity and the water absorption. An improvement in fracture toughness is observed in cement nanocomposites, with a positive correlation between the fracture toughness and the mass fraction of nanofiller for graphene-reinforced cement. Moreover, for graphene-reinforced cement, the fracture toughness values are in the range of 0.701 to 0.717 MPa.sqrt(m). Thus, this study illustrates the potential of nanomaterials to toughen cement while improving the microstructure and water resistance properties.« less
  3. Online repository: and also on: arXiv:2204.00909. Abstract: While welding of thermoplastic composites (TPCs) is a promising rivetless method to reduce weight, higher confidence in joints’ structural integrity and failure prediction must be achieved for widespread use in industry. In this work, we present an innovative study on damage detection for ultrasonically welded TPC joints with multi-walled carbon nanotubes (MWCNTs) and embedded buckypaper films. MWCNTs show promise for structural health monitoring (SHM) of composite joints, assembled by adhesive bonding or fusion bonding, through electrical resistance changes. This study focuses on investigating multifunctional films and their suitability for ultrasonic welding (USW)more »of TPCs, using two approaches: 1) MWCNT-filled polypropylene (PP) nanocomposites prepared via solvent dispersion, and 2) high conductivity MWCNT buckypaper embedded between PP films by hot pressing. Nanocomposite formulations containing 5 wt% and 10 wt% MWCNTs were synthesized using solvent dispersion method, followed by compression molding to manufacture films. The effect of MWCNT concentration on electrical and dynamic mechanical behavior of multifunctional films was examined with a Sourcemeter and Dynamic Mechanical Analyzer, and a comparison was made between 5 - 20 wt% MWCNT/PP films based on previous research. Glass fiber/polypropylene (GF/PP) composite joints were ultrasonically welded in a single lap shear configuration using buckypaper and MWCNT/PP films. Furthermore, electrical resistance measurements were carried out for joints under bending loads. It was observed that 15 wt% and 20 wt% MWCNT/PP films had higher stability and sensitivity for resistance response than embedded buckypaper and films with low MWCNT contents, demonstrating their suitability for USW and potential for SHM.« less
  4. Multi-walled carbon nanotube (MWCNT) filters incorporated with carbon quantum dots (CDots) or single-walled carbon nanotubes (SWCNTs) were produced for bacteria removal from aqueous solutions and also for inactivating the captured bacteria. TMTP Millipore membranes were used as the base of these filters. The results showed that filters with higher MWCNT loading had higher bacterial removal efficiencies. Filters with a MWCNT loading of 4.5 mg were highly effective at removing bacteria from aqueous solution, resulting in a log reduction of 6.41, 6.41, and 5.41 of E. coli cell numbers in filtrates compared to MWCNT filters without coating, MWCNTs filters with 0.15more »mg CDot coating, and MWCNTs filters with 0.15 mg SWCNT coating, respectively. Ionic strength played an important role in bacteria removal. A higher NaCl concentration resulted in higher bacteria removal efficiencies of the filters. Both CDot coatings and SWCNT coatings did not significantly affect the MWCNT filter effects ( P > 0.05). The coatings, especially CDot coatings, significantly inhibited the activities of bacteria retained on the filter surfaces ( P < 0.05). The inhibitory rates were 94.21% or 73.17% on the MWCNT filter surfaces coated with 0.2 mg CDots or SWCNTs, respectively. These results demonstrated that MWCNT filters with CDot coatings were highly effective to remove bacteria from water and to inhibit the activities of the captured bacteria on filter surfaces.« less
  5. We investigate the mechanisms by which titanium dioxide nano-particles (nano-TiO2) interact with cement hydration products. To this end, we synthesize nanomodified cement samples with 1 wt% and 5 wt% of TiO2. We investigate the physical properties using depth-sensing based methods such as statistical nano-indentation and microscopic scratch testing. Fourier transform infrared spectroscopy yields the chemistry, whereas micromechanics modeling provides insights into the nanostructure. The macroscopic plane strain modulus increases by 16% and 83%, respectively, and the macroscopic indentation hardness increases by 37% and 40%, respectively. The fracture toughness rises by 3% and 11%, respectively. Environmental scanning electron microscopy reveals amore »30% reduction in crack width for TiO2 cement nanocomposites compared to plain cement. Meanwhile, Fourier transform infrared spectroscopy and statistical deconvolution show an increase in the fraction of high-density calcium silicate hydrates (by 22% and 12% respectively), and in the fraction of calcium hydroxide (by 101% and 251% respectively). Within the framework of the colloidal and granular models of C-S-H, the increase in stiffness and strength after nano-TiO2 modification of cement paste is due to the closely-packed structure and the high atomic coordination number of high-density C-S-H. Similarly, due to the high dimensional stability of high-density C-S-H and calcium hydroxide, our results explain the reported improvements in drying shrinkage and creep properties following cement modification with nano-TiO2.« less