skip to main content


This content will become publicly available on December 1, 2024

Title: Multiwalled carbon nanotubes as hard templates to yield advanced geopolymer-based self-assembled nanostructured ceramics
Novel multifunctional construction materials are needed to promote resilient infrastructure in the face of climate change and extreme weather. Nanostructured materials such as geopolymer reinforced with carbon-based nanomaterials are a promising way to reach that goal. In recent years, several studies have investigated the influence of nanomaterials on the physical properties of geopolymer composites such as compressive strength and fracture toughness. Yet, a fundamental understanding of the influence of nanomaterials on the nanoscale and micron-scale structure has been elusive so far. Our research objective is to understand how multiwalled carbon nanotubes (MWCNT) can help tailor the microstructure of geopolymers to yield architected multifunctional nanocomposites. We synthesized geopolymer nanocomposites reinforced with 50-nm thick multiwalled carbon nanotubes with mass fractions in the range of 0.1 wt%, 0.2 wt%, and 0.5 wt%. Our major finding is that MWCNTs act as hard templates that promote geopolymer formation via self-assembly. Geopolymer nanoparticle growth is observed along the walls of MWCNTs. A refinement in grain size is observed: increasing the fraction of MWCNTs by 0.5 wt% leads to a reduction in grain size by 54%. Similarly, increasing the mass fraction of MWCNTs leads to a densification of the geopolymer matrix as demonstrated by the Fourier transform infrared spectroscopy results and the statistical deconvolution analysis. Mercury intrusion porosimetry shows a nanoscale tailoring of the pore size distribution: a 26% decrease in porosity is observed as the fraction of MWCNTs is increased to 0.5 wt%. As a result of these nanoscale structural changes, a greater resistance to long-term deformation is observed for MWCNT-reinforced geopolymers, as the creep modulus increases both locally and macroscopically. At the macroscopic level, a 42% increase in the macroscopic logarithmic creep modulus is observed as the fraction of MWCNTs is increased to 0.5 wt%. These findings and the supporting methodology are important to understand how to manipulate matter below 100 nm. This research also paves the way for the design of resilient infrastructure materials with tailored microstructure and mechanical properties.  more » « less
Award ID(s):
1928702
NSF-PAR ID:
10474777
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Mechanics Research Communications
Volume:
134
Issue:
C
ISSN:
0093-6413
Page Range / eLocation ID:
104216
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cement is the most widely consumed material globally, with the cement industry accounting for 8% of human-caused greenhouse gas emissions. Aiming for cement composites with a reduced carbon footprint, this study investigates the potential of nanomaterials to improve mechanical characteristics. An important question is to increase the fraction of carbon-based nanomaterials within cement matrices while controlling the microstructure and enhancing the mechanical performance. Specifically, this study investigates the fracture response of Portland cement reinforced with 1D and 2D carbon-based nanomaterials, such as carbon nanofibers, multiwalled carbon nanotubes, helical carbon nanotubes, and graphene oxide nanoplatelets. Novel processing routes are shown to incorporate 0.1–0.5 wt% of nanomaterials into cement using a quadratic distribution of ultrasonic energy. Scratch testing is used to probe the fracture response by pushing a sphero-conical probe against the surface of the material under a linearly increasing vertical force. Fracture toughness is then computed using a nonlinear fracture mechanics model. Nanomaterials are shown to bridge nanoscale air voids, leading to pore refinement, and a decrease in the porosity and the water absorption. An improvement in fracture toughness is observed in cement nanocomposites, with a positive correlation between the fracture toughness and the mass fraction of nanofiller for graphene-reinforced cement. Moreover, for graphene-reinforced cement, the fracture toughness values are in the range of 0.701 to 0.717 MPa.sqrt(m). Thus, this study illustrates the potential of nanomaterials to toughen cement while improving the microstructure and water resistance properties. 
    more » « less
  2. Abstract

    We investigate the fracture response of metakaolin‐based geopolymer reinforced with 0.1 wt%, 0.2 wt%, and 0.5 wt% carbon nanofibers. We measure the elastoplastic response using microindentation tests. We note an increase in indentation modulus of 5%, 13%, and 21%, and an increase in indentation hardness of 9%, 18%, and 25%, respectively. We measure the fracture energy using cutting‐edge microscopic fracture tests. In our tests, a sphero‐conical diamond indenter pushes across the specimen's surface under a prescribed vertical force. We analyze the recorded penetration depth and horizontal force using nonlinear fracture mechanics and extract the fracture parameters. We find that carbon nanofibers enhance fracture resistance. The fracture toughness increases by, respectively, 38%, 40%, and 45%; meanwhile, the fracture energy increases by, respectively, 83%, 72%, and 74%. We find that carbon nanofibers lead to a densification of the microstructure. Moreover, we observe crack‐bridging mechanisms in geopolymer nanocomposites. This study is important to pave the way for novel enhanced‐performance and multifunctional structural materials.

     
    more » « less
  3. null (Ed.)
    We elucidate the mechanisms by which multi-walled carbon nanotubes (MWCNTs) influence the microstructure, fracture behavior, and hydration of cement paste. We disperse MWCNTs using a multi-step approach that involves high-energy pre-dispersion using ultrasonic energy followed by low-energy dispersion using un-hydrated cement particles. In turn, the low-energy dispersion step involves high-shear mixing and mechanical stirring. High-resolution environmental scanning electron microscopy of cement+0.2 wt% MWCNT, cement+0.5 wt% MWNCT, and of cement+1 wt% MWCNT show that MWCNTs bridge air voids, thereby refining the pore size and strengthening the C-S-H matrix. The fracture toughness increased by 9.38% with the addition of 0.2 wt% multi-walled carbon nanotubes, and by 14.06% with the addition of 0.5 wt% multi-walled carbon nanotubes and ligament bridging was the dominant toughening mechanism. Moreover, for all reinforcement levels, MWCNTs induced a conversion of low-density C-S-H into high-density C-S-H along with a drastic drop in the capillary porosity: adding 0.1–0.5 wt% MWCNT resulted in a 200% increase in the volume fraction of high-density C-S-H. Thus, our experiments show that MWCNT enhances the mechanical properties and transport properties by: (i) promoting high-density C-S-H formation, (ii) promoting calcium hydroxide formation, (iii) filling microscopic air voids, (iv) reducing the capillary porosity, (v) increasing the fraction of small gel pores (1.2–2 nm in size), and (vi) by bridging microcracks. 
    more » « less
  4. The structural characteristics of polymer nanocomposites with functionalized multiwall carbon nanotubes (MWCNTs) in poly(methyl methacrylate) matrix have been studied in relation to nanofiller loading and surface functionality. Different functional groups have been covalently attached on the MWCNTs sidewalls in order to induce interfacial interactions at nanofiller/polymer interface, which resulted in an improved nanomechanical features. Structural properties of nanocomposites, studied with XRD and Raman analysis, indicated the most pronounced decrease in a degree of amorphousness for samples containing 0.5 and 1 wt% of MWCNTs functionalized with dapsone (dapson‐MWCNT) and diethyl malonate (dem‐MWCNT). SEM and TEM micrographs confirmed improved dispersibility of the MWCNTs modified with aromatic structure of dapsone inside PMMA matrix. A significant increase in a glass transition temperature of over 60°C has been found for the 1 wt% dapson‐MWCNT nanocomposite. Additional modification of dapson‐MWCNT by further increasing aromaticity and voluminosity of attached moiety (fid‐MWCNT), showed 30°C increases in a glass transition temperature at 4 wt% of nanofiller loading, which is similar to shift of 37°C with loading of MWCNTs modified with ester terminal group. A maximum increase of 56% of reduced modulus and 86% of hardness was obtained for 1 wt% loading of dapson‐MWCNT nanofiller. POLYM. COMPOS., 38:E472–E489, 2017. © 2016 Society of Plastics Engineers

     
    more » « less
  5. ABSTRACT

    An electric field‐assistedin situdispersion of multiwall carbon nanotubes (MWCNTs) in polymer nanocomposites, fabricated through stereolithography three‐dimensional (3D) printing technique, was demonstrated. The introduction of MWCNTs increased the elasticity modulus of the polymer resin by 77%. Furthermore, the use of an electric field forin situMWCNT dispersion helped improving the average elongation at break of the samples with MWCNTs by 32%. The electric field also increased the ultimate tensile strength of the MWCNT reinforced nanocomposites by 42%. An increase of over 20% in the ultimate tensile strength ofin situdispersed MWCNT nanocomposites over the pure polymer material was observed. Finally, it was demonstrated that the magnitude and direction of the electrical conductivity of MWCNT nanocomposites can be engineered through the application ofin situelectric fields during 3D printing. An increase of 50% in the electrical conductivity was observed when MWCNTs were introduced, while the application of the electric field further improved the electrical conductivity by 26%. The presented results demonstrated the feasibility of tuning both electrical and mechanical properties of MWCNT reinforced polymer nanocomposites usingin situelectrical field‐assisted 3D printing. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2019,136, 47600.

     
    more » « less