skip to main content

Title: Conscious processing of narrative stimuli synchronizes heart rate between individuals
Heart rate has natural fluctuations that are typically ascribed to autonomic function. Recent evidence suggests that conscious processing can affect the timing of the heartbeat. We hypothesized that heart rate is modulated by conscious processing and therefore dependent on attentional focus. To test this, we leverage the observation that neural processes can be synchronized between subjects by presenting an identical narrative stimulus. As predicted, we find significant inter-subject correlation of the heartbeat (ISC-HR) when subjects are presented with an auditory or audiovisual narrative. Consistent with the conscious processing hypothesis, we find that ISC-HR is reduced when subjects are distracted from the narrative, and that higher heart rate synchronization predicts better recall of the narrative. Finally, patients with disorders of consciousness who are listening to a story have lower ISC-HR, as compared to healthy individuals, and that individual ISC-HR might predict a patients’ prognosis.. We conclude that heart rate fluctuations are partially driven by conscious processing, depend on attentional state, and may represent a simple metric to assess conscious state in unresponsive patients.
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1660548
Publication Date:
NSF-PAR ID:
10286397
Journal Name:
bioRxiv
ISSN:
2692-8205
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Neural, physiological, and behavioral signals synchronize between human subjects in a variety of settings. Multiple hypotheses have been proposed to explain this interpersonal synchrony, but there is no clarity under which conditions it arises, for which signals, or whether there is a common underlying mechanism. We hypothesized that cognitive processing of a shared stimulus is the source of synchrony between subjects, measured here as intersubject correlation (ISC). To test this, we presented informative videos to participants in an attentive and distracted condition and subsequently measured information recall. ISC was observed for electro-encephalography, gaze position, pupil size, and heart rate, but not respiration and head movements. The strength of correlation was co-modulated in the different signals, changed with attentional state, and predicted subsequent recall of information presented in the videos. There was robust within-subject coupling between brain, heart, and eyes, but not respiration or head movements. The results suggest that ISC is the result of effective cognitive processing, and thus emerges only for those signals that exhibit a robust brain–body connection. While physiological and behavioral fluctuations may be driven by multiple features of the stimulus, correlation with other individuals is co-modulated by the level of attentional engagement with the stimulus.

  2. Vital signs (e.g., heart and respiratory rate) are indicative for health status assessment. Efforts have been made to extract vital signs using radio frequency (RF) techniques (e.g., Wi-Fi, FMCW, UWB), which offer a non-touch solution for continuous and ubiquitous monitoring without users’ cooperative efforts. While RF-based vital signs monitoring is user-friendly, its robustness faces two challenges. On the one hand, the RF signal is modulated by the periodic chest wall displacement due to heartbeat and breathing in a nonlinear manner. It is inherently hard to identify the fundamental heart and respiratory rates (HR and RR) in the presence of higher order harmonics of them and intermodulation between HR and RR, especially when they have overlapping frequency bands. On the other hand, the inadvertent body movements may disturb and distort the RF signal, overwhelming the vital signals, thus inhibiting the parameter estimation of the physiological movement (i.e., heartbeat and breathing). In this paper, we propose DeepVS, a deep learning approach that addresses the aforementioned challenges from the non-linearity and inadvertent movements for robust RF-based vital signs sensing in a unified manner. DeepVS combines 1D CNN and attention models to exploit local features and temporal correlations. Moreover, it leverages a two-stream schememore »to integrate features from both time and frequency domains. Additionally, DeepVS unifies the estimation of HR and RR with a multi-head structure, which only adds limited extra overhead (<1%) to the existing model, compared to doubling the overhead using two separate models for HR and RR respectively. Our experiments demonstrate that DeepVS achieves 80-percentile HR/RR errors of 7.4/4.9 beat/breaths per minute (bpm) on a challenging dataset, as compared to 11.8/7.3 bpm of a non-learning solution. Besides, an ablation study has been conducted to quantify the effectiveness of DeepVS.« less
  3. Central and autonomic nervous system activities are coupled during sleep. Cortical slow oscillations (SOs; <1 Hz) coincide with brief bursts in heart rate (HR), but the functional consequence of this coupling in cognition remains elusive. We measured SO–HR temporal coupling (i.e., the peak-to-peak interval between downstate of SO event and HR burst) during a daytime nap and asked whether this SO–HR timing measure was associated with temporal processing speed and learning on a texture discrimination task by testing participants before and after a nap. The coherence of SO–HR events during sleep strongly correlated with an individual's temporal processing speed in the morning and evening test sessions, but not with their change in performance after the nap (i.e., consolidation). We confirmed this result in two additional experimental visits and also discovered that this association was visit-specific, indicating a state (not trait) marker. Thus, we introduce a novel physiological index that may be a useful marker of state-dependent processing speed of an individual.
  4. Multi-modal wearable sensors monitoring physiology and environment simultaneously would offer a great promise to manage respiratory health, especially for asthmatic patients. In this study, we present a preliminary investigation of the correlation between ozone exposure, heart rate, heart rate variability, and lung function. As the first step, we tested the effect of low-level ozone exposure in a sample size of four healthy individuals. Test subjects underwent controlled exposure from 0.06 to 0.08 ppm of ozone and filtered air on two separate exposure days. Our results indicate an increment in mean heart rate in three out of four test subjects when exposed to ozone. We have also observed that changes in mean heart rate has a positive correlation with changes in lung function and a negative correlation with changes in neutrophil count. These results provide a baseline understanding of healthy subjects as a control group.
  5. Longitudinal fetal health monitoring is essential for high-risk pregnancies. Heart rate and heart rate variability are prime indicators of fetal health. In this work, we implemented two neural network architectures for heartbeat detection on a set of fetal phonocardiogram signals captured using fetal Doppler and a digital stethoscope. We test the efficacy of these networks using the raw signals and the hand-crafted energy from the signal. The results show a Convolutional Neural Network is the most efficient at identifying the S1 waveforms in a heartbeat, and its performance is improved when using the energy of the Doppler signals. We further discuss issues, such as low Signal-to-Noise Ratios (SNR), present in the training of a model based on the stethoscope signals. Finally, we show that we can improve the SNR, and subsequently the performance of the stethoscope, by matching the energy from the stethoscope to that of the Doppler signal.