skip to main content

Title: Duality as a central organizing theme in linear circuit analysis instruction
Linear circuit analysis is a complex topic in which students must use many principles to complete problems successfully, which may overload working memory and thereby impede learning. Introducing organizing principles may help students develop schemas that help reduce this burden and develop deeper conceptual understanding. The use of duality as such an organizing concept is explored in this work. To be effective, however, all the topics should be presented in a dual manner. Historically, definitions of series and parallel elements have been used that are not dual to each other, and mesh analysis has been performed in a way that is not fully dual to nodal analysis. This paper examines the research question of whether these key topics can be presented in a novel, fully dual fashion and whether students will accept and appreciate such a treatment. The revised approaches were implemented using lectures, online interactive tutorials, and step-based tutoring software exercises. Surveys using both quantitative and qualitative analysis were conducted over three semesters and showed positive reactions from 72-83% of students. These results can lead to development of a full set of instructional materials centered around duality to enable improved learning of circuit analysis.
Authors:
; ;
Award ID(s):
1821628
Publication Date:
NSF-PAR ID:
10286471
Journal Name:
IEEE Frontiers in Education
Sponsoring Org:
National Science Foundation
More Like this
  1. Improving undergraduate STEM teaching for diverse students is dependent to some extent on increasing the representation of Black, Indigenous and People of Color (BIPOC) and women in the ranks of faculty in engineering departments. However, new faculty members, whether they had postdoctoral training or not, report that they were not adequately prepared for academia. To address this need, a professional development program was developed for underrepresented doctoral and postdoctoral students, which focused on various strategies to be successful in teaching, research and service aspects of academic positions. The program included an intensive two-week summer session, with follow-up mentoring during the academic year, and was conducted from 2017 to 2020 with three cohorts of fellows recruited from across the country. To evaluate the impact of the program on the participants’ perceptions of their preparation for academic careers, a follow up survey was sent in May 2021 to the three former cohorts of participants (n=61), and responses were received from 37 of them. The survey asked participants to reflect on areas that they felt most prepared for in their academic positions, and areas that they felt least prepared for. The survey also asked participants to discuss additional supports they would have likedmore »to have been provided with to better prepare them given their current positions (academic, industry, etc.). Results from the survey indicated that 92% of participants found the professional development program prepared them for the responsibilities and expectations to succeed in academic positions. Over 90% agreed that the program prepared them for the application process for a tenure track search, and 89% agreed the program prepared them for the primary components of the startup package. In addition, participants reported that the program increased their preparation in developing teaching philosophy (100%), developing learning outcomes (97%), and using active learning strategies during teaching (91%). The majority agreed that the program helped prepare them to teach students with various cultural backgrounds, and to develop and use assessment strategies. Participants were also asked to discuss the impact of the Covid 19 pandemic on their career trajectory, and most of them reported being somewhat impacted (65%) to extremely impacted (29%). Participants reported few or no job openings, cancelations of interviews, delays in research which impacted the rate of completing degrees, and publications, which affected the participants’ application competitiveness. Furthermore, working from home and balancing family and academic responsibilities affected their productivity. Based on the survey results, funds were secured to provide an additional day of professional training to cover any items not addressed during summer training, as well as any issues, challenges, or concerns they might have encountered while fulfilling their academic position. Thirty-three ACADEME fellows have indicated that they will participate in the new professional development, held in May 2022. Results from this analysis, and preliminary topics and outcomes of the supplemental activities are discussed. The findings contribute to the literature by increasing knowledge of specific challenges that new faculty encounter and can inform future efforts to support minorities and women in engineering doctoral programs.« less
  2. Improving undergraduate STEM teaching for diverse students is dependent to some extent on increasing the representation of Black, Indigenous and People of Color (BIPOC) and women in the ranks of faculty in engineering departments. However, new faculty members, whether they had postdoctoral training or not, report that they were not adequately prepared for academia. To address this need, a professional development program was developed for underrepresented doctoral and postdoctoral students, which focused on various strategies to be successful in teaching, research and service aspects of academic positions. The program included an intensive two-week summer session, with follow-up mentoring during the academic year, and was conducted from 2017 to 2020 with three cohorts of fellows recruited from across the country. To evaluate the impact of the program on the participants’ perceptions of their preparation for academic careers, a follow up survey was sent in May 2021 to the three former cohorts of participants (n=61), and responses were received from 37 of them. The survey asked participants to reflect on areas that they felt most prepared for in their academic positions, and areas that they felt least prepared for. The survey also asked participants to discuss additional supports they would have likedmore »to have been provided with to better prepare them given their current positions (academic, industry, etc.). Results from the survey indicated that 92% of participants found the professional development program prepared them for the responsibilities and expectations to succeed in academic positions. Over 90% agreed that the program prepared them for the application process for a tenure track search, and 89% agreed the program prepared them for the primary components of the startup package. In addition, participants reported that the program increased their preparation in developing teaching philosophy (100%), developing learning outcomes (97%), and using active learning strategies during teaching (91%). The majority agreed that the program helped prepare them to teach students with various cultural backgrounds, and to develop and use assessment strategies. Participants were also asked to discuss the impact of the Covid 19 pandemic on their career trajectory, and most of them reported being somewhat impacted (65%) to extremely impacted (29%). Participants reported few or no job openings, cancelations of interviews, delays in research which impacted the rate of completing degrees, and publications, which affected the participants’ application competitiveness. Furthermore, working from home and balancing family and academic responsibilities affected their productivity. Based on the survey results, funds were secured to provide an additional day of professional training to cover any items not addressed during summer training, as well as any issues, challenges, or concerns they might have encountered while fulfilling their academic position. Thirty-three ACADEME fellows have indicated that they will participate in the new professional development, held in May 2022. Results from this analysis, and preliminary topics and outcomes of the supplemental activities are discussed. The findings contribute to the literature by increasing knowledge of specific challenges that new faculty encounter and can inform future efforts to support minorities and women in engineering doctoral programs.« less
  3. Elementary linear circuit analysis is a core competency for electrical and many other engineers. Two of the standard approaches to systematic analysis of linear circuits are nodal and mesh analysis, the latter being limited to planar circuits. Nodal and mesh analysis are related by duality and should therefore be fully symmetrical with each other. Here, the usual textbook approach to mesh analysis is argued to be deficient in that it obscures this fundamental duality and symmetry, and may thereby impede the development of intuition and the understanding of the nature of “mesh currents.” In particular, the usual distinction between “inner” and “outer” meshes (if the latter is even recognized) is argued to be meaningless, as can be seen when drawing a planar circuit on the surface of a sphere. A generalized definition of a mesh is proposed that includes both inner and outer meshes on the same footing. Selection of a reference node in nodal analysis should be paralleled by the selection of any mesh to be the reference mesh in mesh analysis, which is always selected to be the outer mesh by default in the usual approach. All branch currents are shown to the difference of two mesh currents,more »and the zero of all mesh currents is now arbitrary just as it is for node voltages. Use of supermeshes is sometimes obviated by the new approach, and the analysis is sometimes simplified. This new approach has been used in two sections of a linear circuit analysis course in Fall 2019, and student survey data is presented to show preference for the new method over the usual textbook method. An interactive multiple-choice tutorial describing the new method has been integrated into a step-based tutoring system for linear circuit analysis.« less
  4. Science kits have been a staple of learning for some time, but in the era of COVID-19 at-home science kits took specific prominence in educational initiatives. In this paper, we delineate how kit-based education can be paired with virtual connection technology to enhance postsecondary and career exploration. The “Content, Connection and Careers” kit-based program has been developed to enable youth to explore electrical engineering principles while connecting virtually with university students to discuss engineering courses and careers. When assembled and wired up, the kit components become linear motors that use a magnetic force to pull a bolt into a pipe when youth press a button. This follows the same working principles as a doorbell or solenoid. These kits are supported by virtual learning sessions where youth connect with university students and faculty to fully understand the educational content, connect to peers and caring adults to share their learning, and explore careers that use electrical engineering skills. To investigate the effectiveness of the program, surveys were distributed to participants to understand whether the kits were simple enough for independent learning but robust enough to encourage additional self-exploration of more difficult topics with the aid of expert scientists and other adult rolemore »models. Additionally, youth were asked if the connections made with university faculty and students was beneficial in their thinking of postsecondary options and college engagement. Over 60 elementary and middle-school aged youth participated in the project. Over 80 percent of survey respondents self-reported improved knowledge of how an electromagnetic field works and how to build a simple electromagnet. Other results showed an increased understanding of engineering careers and courses required to study electric engineering in college. Before their experience in the project, very few of the young people had ever talked to university faculty or university students about their areas of research or their journey into the fields of science, technology, engineering, and math (STEM). This connection was described in the surveys as what the youth liked best about the project.« less
  5. Engineering instructors often use physical manipulatives such as foam beams, rolling cylinders, and large representations of axis systems to demonstrate mechanics concepts and help students visualize systems. Additional benefits are possible when manipulatives are in the hands of individual students or small teams of students who can explore concepts at their own pace and focus on their specific points of confusion. Online learning modalities require new strategies to promote spatial visualization and kinesthetic learning. Potential solutions include creating videos of the activities, using CAD models to demonstrate the principles, programming computer simulations, and providing hands-on manipulatives to students for at-home use. This Work-in-Progress paper discusses our experiences with this last strategy in statics courses two western community colleges and a western four-year university where we supplied students with their own hands-on kits. We have previously reported on the successful implementation of a hands-on statics kit consisting of 3D printed components and standard hardware. The kit was originally designed for use by teams of students during class to engage with topics such as vectors, moments, and rigid body equilibrium. With the onset of the COVID-19 pandemic and shift to online instruction, the first author developed a scaled down version of themore »kit for at-home use by individual students and modified the associated activity worksheets accordingly. For the community college courses, local students picked up their models at the campus bookstore. We also shipped some of the kits to students who were unable to come to campus, including some in other countries. Due to problems with printing and availability of materials, only 18 kits were available for the class of 34 students at the university implementation. Due to this circumstance, students were placed in teams and asked to work together virtually, one student showing the kit to the other student as they worked through the worksheet prompts. One community college instructor took this approach as well for a limited number of international students who did not receive their kits in a timely manner due to shipping problems. Two instructors assigned the hands-on kits as asynchronous learning activities in their respective online courses, with limited guidance on their use. The third used the kits primarily in synchronous online class meetings. We found that students’ reaction to the models varied by pilot site and presume that implementation differences contributed to this variation. In all cases, student feedback was less positive than it has been for face-to-face courses that used the models from which the take home kit was adapted. Our main conclusion is that implementation matters. Doing hands-on learning in an online course requires some fundamental rethinking about how the learning is structured and scaffolded.« less