The use of metal and semimetal van der Waals contacts for 2D semiconducting devices has led to remarkable device optimizations. In comparison with conventional thin-film metal deposition, a reduction in Fermi level pinning at the contact interface for van der Waals contacts results in, generally, lower contact resistances and higher mobilities. Van der Waals contacts also lead to Schottky barriers that follow the Schottky–Mott rule, allowing barrier estimates on material properties alone. In this study, we present a double Schottky barrier model and apply it to a barrier tunable all van der Waals transistor. In a molybdenum disulfide (MoS2) transistor with graphene and few-layer graphene contacts, we find that the model can be applied to extract Schottky barrier heights that agree with the Schottky–Mott rule from simple two-terminal current–voltage measurements at room temperature. Furthermore, we show tunability of the Schottky barrier
An analysis of the optoelectronic properties and photocurrent generation mechanisms in 2D multilayer crystallites of black phosphorus (BP) is conducted from 350 K down to cryogenic temperatures
- PAR ID:
- 10286509
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- physica status solidi (a)
- Volume:
- 218
- Issue:
- 20
- ISSN:
- 1862-6300
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract in-situ using a regional contact gate. Our results highlight the utility of a basic back-to-back diode model in extracting device characteristics in all van der Waals transistors. -
Atomically thin 2D transition metal dichalcogenides (TMDs), such as MoS2, are promising candidates for nanoscale photonics because of strong light–matter interactions. However, Fermi‐level pinning due to metal‐induced gap states (MIGS) at the metal–monolayer (1L)‐MoS2interface limits the application of optoelectronic devices based on conventional metals due to high contact resistance. On the other hand, a semimetal–TMD–semimetal device can overcome this limitation, where the MIGS are sufficiently suppressed allowing ohmic contacts. Herein, the optoelectronic performance of a bismuth–1L‐MoS2–bismuth device with ohmic electrical contacts and extraordinary optoelectronic properties is demonstrated. To address the wafer‐scale production, full coverage 1L‐MoS2grown by chemical vapor deposition. High photoresponsivity of 300 A W−1at wavelength 400 nm measured at 77 K, which translates into an external quantum efficiency (EQE) ≈1000 or 105%, is measured. The 90% rise time of the devices at 77 K is 0.1 ms, suggesting they can operate at the speed of ≈10 kHz. High‐performance broadband photodetector with spectral coverage ranging from 380 to 1000 nm is demonstrated. The combination of large‐array device fabrication, high sensitivity, and high‐speed response offers great potential for applications in photonics, including integrated optoelectronic circuits.
-
Abstract The minimization of the subthreshold swing (SS) in transistors is essential for low‐voltage operation and lower power consumption, both critical for mobile devices and internet of things (IoT) devices. The conventional metal‐oxide‐semiconductor field‐effect transistor requires sophisticated dielectric engineering to achieve nearly ideal SS (60 mV dec−1at room temperature). However, another type of transistor, the junction field‐effect transistor (JFET) is free of dielectric layer and can reach the theoretical SS limit without complicated dielectric engineering. The construction of a 2D SnSe/MoS2van der Waals (vdW) heterostructure‐based JFET with nearly ideal SS is reported. It is shown that the SnSe/MoS2vdW heterostructure exhibits excellent p–n diode rectifying characteristics with low saturate current. Using the SnSe as the gate and MoS2as the channel, the SnSe/MoS2vdW heterostructure exhibit well‐behavioured n‐channel JFET characteristics with a small pinch‐off voltage
V Pof −0.25 V, nearly ideal subthreshold swing SS of 60.3 mV dec−1and high ON/OFF ratio over 106, demonstrating excellent electronic performance especially in the subthreshold regime. -
Abstract The intercalation of layered compounds opens up a vast space of new host–guest hybrids, providing new routes for tuning the properties of materials. Here, it is shown that uniform and continuous layers of copper can be intercalated within the van der Waals gap of bulk MoS2resulting in a unique Cu–MoS2hybrid. The new Cu–MoS2hybrid, which remains semiconducting, possesses a unique plasmon resonance at an energy of ≈1eV, giving rise to enhanced optoelectronic activity. Compared with high‐performance MoS2photodetectors, copper‐enhanced devices are superior in their spectral response, which extends into the infrared, and also in their total responsivity, which exceeds 104A W−1. The Cu–MoS2hybrids hold promise for supplanting current night‐vision technology with compact, advanced multicolor night vision.
-
The 2D van der Waals crystals have shown great promise as potential future electronic materials due to their atomically thin and smooth nature, highly tailorable electronic structure, and mass production compatibility through chemical synthesis. Electronic devices, such as field effect transistors (FETs), from these materials require patterning and fabrication into desired structures. Specifically, the scale up and future development of “2D”-based electronics will inevitably require large numbers of fabrication steps in the patterning of 2D semiconductors, such as transition metal dichalcogenides (TMDs). This is currently carried out via multiple steps of lithography, etching, and transfer. As 2D devices become more complex (e.g., numerous 2D materials, more layers, specific shapes, etc.), the patterning steps can become economically costly and time consuming. Here, we developed a method to directly synthesize a 2D semiconductor, monolayer molybdenum disulfide (MoS2), in arbitrary patterns on insulating SiO2/Si via seed-promoted chemical vapor deposition (CVD) and substrate engineering. This method shows the potential of using the prepatterned substrates as a master template for the repeated growth of monolayer MoS2patterns. Our technique currently produces arbitrary monolayer MoS2patterns at a spatial resolution of 2 μm with excellent homogeneity and transistor performance (room temperature electron mobility of 30 cm2V−1s−1and on–off current ratio of 107). Extending this patterning method to other 2D materials can provide a facile method for the repeatable direct synthesis of 2D materials for future electronics and optoelectronics.