skip to main content


Title: Improvements in 2D p-type WSe2 transistors towards ultimate CMOS scaling
Abstract

This paper provides comprehensive experimental analysis relating to improvements in the two-dimensional (2D) p-type metal–oxide–semiconductor (PMOS) field effect transistors (FETs) by pure van der Waals (vdW) contacts on few-layer tungsten diselenide (WSe2) with high-k metal gate (HKMG) stacks. Our analysis shows that standard metallization techniques (e.g., e-beam evaporation at moderate pressure ~ 10–5 torr) results in significant Fermi-level pinning, but Schottky barrier heights (SBH) remain small (< 100 meV) when using high work function metals (e.g., Pt or Pd). Temperature-dependent analysis uncovers a more dominant contribution to contact resistance from the channel access region and confirms significant improvement through less damaging metallization techniques (i.e., reduced scattering) combined with strongly scaled HKMG stacks (enhanced carrier density). A clean contact/channel interface is achieved through high-vacuum evaporation and temperature-controlled stepped deposition providing large improvements in contact resistance. Our study reports low contact resistance of 5.7 kΩ-µm, with on-state currents of ~ 97 µA/µm and subthreshold swing of ~ 140 mV/dec in FETs with channel lengths of 400 nm. Furthermore, theoretical analysis using a Landauer transport ballistic model for WSe2SB-FETs elucidates the prospects of nanoscale 2D PMOS FETs indicating high-performance (excellent on-state current vs subthreshold swing benchmarks) towards the ultimate CMOS scaling limit.

 
more » « less
Award ID(s):
2001107 2129412 2052527
NSF-PAR ID:
10399172
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sc has been employed as an electron contact to a number of two-dimensional (2D) materials (e.g. MoS2, black phosphorous) and has enabled, at times, the lowest electron contact resistance. However, the extremely reactive nature of Sc leads to stringent processing requirements and metastable device performance with no true understanding of how to achieve consistent, high-performance Sc contacts. In this work, WSe2transistors with impressive subthreshold slope (109 mV dec−1) andION/IOFF(106) are demonstrated without post-metallization processing by depositing Sc contacts in ultra-high vacuum (UHV) at room temperature (RT). The lowest electron Schottky barrier height (SBH) is achieved by mildly oxidizing the WSe2in situbefore metallization, which minimizes subsequent reactions between Sc and WSe2. Post metallization anneals in reducing environments (UHV, forming gas) degrade theION/IOFFby ~103and increase the subthreshold slope by a factor of 10. X-ray photoelectron spectroscopy indicates the anneals increase the electron SBH by 0.4–0.5 eV and correspondingly convert 100% of the deposited Sc contacts to intermetallic or scandium oxide. Raman spectroscopy and scanning transmission electron microscopy highlight the highly exothermic reactions between Sc and WSe2, which consume at least one layer RT and at least three layers after the 400 °C anneals. The observed layer consumption necessitates multiple sacrificial WSe2layers during fabrication. Scanning tunneling microscopy/spectroscopy elucidate the enhanced local density of states below the WSe2Fermi level around individual Sc atoms in the WSe2lattice, which directly connects the scandium selenide intermetallic with the unexpectedly large electron SBH. The interface chemistry and structural properties are correlated with Sc–WSe2transistor and diode performance. The recommended combination of processing conditions and steps is provided to facilitate consistent Sc contacts to WSe2.

     
    more » « less
  2. Abstract

    The residue of common photo‐ and electron‐beam resists, such as poly(methyl methacrylate) (PMMA), is often present on the surface of 2D crystals after device fabrication. The residue degrades device properties by decreasing carrier mobility and creating unwanted doping. Here, MoS2and WSe2field effect transistors (FETs) with residue are cleaned by contact mode atomic force microscopy (AFM) and the impact of the residue on: 1) the intrinsic electrical properties, and 2) the effectiveness of electric double layer (EDL) gating are measured. After cleaning, AFM measurements confirm that the surface roughness decreases to its intrinsic state (i.e., ≈0.23 nm for exfoliated MoS2and WSe2) and Raman spectroscopy shows that the characteristic peak intensities (E2gand A1g) increase. PMMA residue causes p‐type doping corresponding to a charge density of ≈7 × 1011cm−2on back‐gated MoS2and WSe2FETs. For FETs gated with polyethylene oxide (PEO)76:CsClO4, removing the residue increases the charge density by 4.5 × 1012cm−2, and the maximum drain current by 247% (statistically significant,p< 0.05). Removing the residue likely allows the ions to be positioned closer to the channel surface, which is essential for achieving the best possible electrostatic gate control in ion‐gated devices.

     
    more » « less
  3. Abstract

    In this paper, electrostatically configurable 2D tungsten diselenide (WSe2) electronic devices are demonstrated. Utilizing a novel triple‐gate design, a WSe2device is able to operate as a tunneling field‐effect transistor (TFET), a metal–oxide–semiconductor field‐effect transistor (MOSFET) as well as a diode, by electrostatically tuning the channel doping to the desired profile. The implementation of scaled gate dielectric and gate electrode spacing enables higher band‐to‐band tunneling transmission with the best observed subthreshold swing (SS) among all reported homojunction TFETs on 2D materials. Self‐consistent full‐band atomistic quantum transport simulations quantitatively agree with electrical measurements of both the MOSFET and TFET and suggest that scaling gate oxide below 3 nm is necessary to achieve sub‐60 mV dec−1SS, while further improvement can be obtained by optimizing the spacers. Diode operation is also demonstrated with the best ideality factor of 1.5, owing to the enhanced electrostatic control compared to previous reports. This research sheds light on the potential of utilizing electrostatic doping scheme for low‐power electronics and opens a path toward novel designs of field programmable mixed analog/digital circuitry for reconfigurable computing.

     
    more » « less
  4. Abstract

    The minimization of the subthreshold swing (SS) in transistors is essential for low‐voltage operation and lower power consumption, both critical for mobile devices and internet of things (IoT) devices. The conventional metal‐oxide‐semiconductor field‐effect transistor requires sophisticated dielectric engineering to achieve nearly ideal SS (60 mV dec−1at room temperature). However, another type of transistor, the junction field‐effect transistor (JFET) is free of dielectric layer and can reach the theoretical SS limit without complicated dielectric engineering. The construction of a 2D SnSe/MoS2van der Waals (vdW) heterostructure‐based JFET with nearly ideal SS is reported. It is shown that the SnSe/MoS2vdW heterostructure exhibits excellent p–n diode rectifying characteristics with low saturate current. Using the SnSe as the gate and MoS2as the channel, the SnSe/MoS2vdW heterostructure exhibit well‐behavioured n‐channel JFET characteristics with a small pinch‐off voltageVPof −0.25 V, nearly ideal subthreshold swing SS of 60.3 mV dec−1and high ON/OFF ratio over 106, demonstrating excellent electronic performance especially in the subthreshold regime.

     
    more » « less
  5. Abstract

    Mobility is a critical parameter that is routinely used for benchmarking the performance of field‐effect transistors (FETs) based on novel nanomaterials. In fact, mobility values are often used to champion nanomaterials since high‐performance devices necessitate high mobility values. The current belief is that the contacts can only limit the FET performance and hence the extracted mobility is an underestimation of the true channel mobility. However, here, such misconception is challenged through rigorous experimental effort, backed by numerical simulations, to demonstrate that overestimation of mobility occurs in commonly used geometries and in nanomaterials for which the contact interface, contact doping, and contact geometry play a pivotal role. In particular, dual‐gated FETs based on multilayer MoS2and WSe2are used as case studies in order to elucidate and differentiate between intrinsic and extrinsic contact effects manifesting in the mobility extraction. The choice of 2D layered transition metal dichalcogenides (TMDCs) as the semiconducting channel is motivated by their potential to replace and/or coexist with Si‐based aging FET technologies. However, the results are equally applicable to nanotube‐ and nanowire‐based FETs, oxide semiconductors, and organic‐material‐based thin‐film FETs.

     
    more » « less