skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Emergence of Ring‐Shaped Microstructures in Restricted Geometries Containing Self‐Propelled, Catalytic Janus Spheres
Abstract The evaporation of liquid droplets containing colloids is an omnipresent natural phenomenon that has received much attention due to the fundamental effects it entails, as well as the multitudes of fields in which it can be applied. The deposition of particulates onto a solid surface during evaporation tends to form ring‐like stains, which are a hallmark of the “coffee‐ring effect.” A wide variety of systems has already been employed to suppress or enable this effect, however, little attention has been focused on particles in restricted geometries that are driven far from equilibrium. Here, we investigate how self‐propelled, “active” catalytic Janus microspheres affect the ring stains left behind during the drying of a geometrically confined suspension containing such particles. Self‐propulsion results indirectly from the decomposition of hydrogen peroxide (H2O2) on the catalytically active hemispherical shell, while the diametrically opposite face is inert; this is how the system is driven out of equilibrium. The magnitude of activity can be controlled by adjusting the volume concentration of aqueous H2O2within the suspension. This parameter strongly influences the ring‐shaped microstructures obtained, especially when the concentration is sufficiently high to produce oxygen bubbles that take over the motion as opposed to auto‐phoresis.  more » « less
Award ID(s):
1847670
PAR ID:
10286518
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemNanoMat
Volume:
7
Issue:
10
ISSN:
2199-692X
Format(s):
Medium: X Size: p. 1125-1130
Size(s):
p. 1125-1130
Sponsoring Org:
National Science Foundation
More Like this
  1. Active particles consume energy stored in the environment and convert it into mechanical motion. Many potential applications of these systems involve their flowing, extrusion, and deposition through channels and nozzles, such as targeted drug delivery and out‐of‐equilibrium self‐assembly. However, understanding their fundamental interactions with flow and boundaries remain incomplete. Herein, experimental and theoretical studies of hydrogen peroxide (H2O2) powered self‐propelled gold–platinum nanorods in parallel channels and nozzles are conducted. The behaviors of active (self‐propelled) and passive rods are systematically compared. It is found that most active rods self‐align with the flow streamlines in areas with high shear and exhibit rheotaxis (swimming against the flow). In contrast, passive rods continue moving unaffected until the flow rate is very high, at which point they also start showing some alignment. The experimental results are rationalized by computational modeling delineating activity and rod‐flow interactions. The obtained results provide insight into the manipulation and control of active particle flow and extrusion in complex geometries. 
    more » « less
  2. Abstract We report the synthesis of ordered mesoporous ceria ( m CeO 2 ) with highly crystallinity and thermal stability using hybrid polymer templates consisting of organosilanes. Those organosilane-containing polymers can convert into silica-like nanostructures that further serve as thermally stable and mechanically strong templates to prevent the collapse of mesoporous frameworks during thermal-induced crystallization. Using a simple evaporation-induced self-assembly process, control of the interaction between templates and metal precursors allows the co-self-assembly of polymer micelles and Ce 3+ ions to form uniform porous structures. The porosity is well-retained after calcination up to 900 °C. After the thermal engineering at 700 °C for 12 h ( m CeO 2 -700-12 h), m CeO 2 still has a specific surface area of 96 m 2 g −1 with a pore size of 14 nm. m CeO 2 is demonstrated to be active for electrochemical oxidation of sulfite. m CeO 2 -700-12 h with a perfect balance of crystallinity and porosity shows the fastest intrinsic activity that is about 84 times more active than bulk CeO 2 and 5 times more active than m CeO 2 that has a lower crystallinity. 
    more » « less
  3. A new continuum perspective for phoretic motion is developed that is applicable to particles of any shape in ‘microstructured’ fluids such as a suspension of solute or bath particles. Using the reciprocal theorem for Stokes flow it is shown that the local osmotic pressure of the solute adjacent to the phoretic particle generates a thrust force (via a ‘slip’ velocity) which is balanced by the hydrodynamic drag such that there is no net force on the body. For a suspension of passive Brownian bath particles this perspective recovers the classical result for the phoretic velocity owing to an imposed concentration gradient. In a bath of active particles that self-propel with characteristic speed $$U_0$$ for a time $$\tau _R$$ and then change direction randomly, taking a step of size $$\ell = U_0 \tau _R$$ , at high activity the phoretic velocity is $$\boldsymbol {U} \sim - U_0 \ell \boldsymbol {\nabla } \phi _b$$ , where $$\phi _b$$ is a measure of the ‘volume’ fraction of the active bath particles. The phoretic velocity is independent of the size of the phoretic particle and of the viscosity of the suspending fluid. Because active systems are inherently out of equilibrium, phoretic motion can occur even without an imposed concentration gradient. It is shown that at high activity when the run length varies spatially, net phoretic motion results in $$\boldsymbol {U} \sim - \phi _b U_0 \boldsymbol {\nabla } \ell$$ . These two behaviours are special cases of the more general result that phoretic motion arises from a gradient in the swim pressure of active matter. Finally, it is shown that a field that orients (but does not propel) the active particles results in a phoretic velocity $$\boldsymbol {U} \sim - \phi _b U_0 \ell \boldsymbol {\nabla }\varPsi$$ , where $$\varPsi$$ is the (non-dimensional) potential associated with the field. 
    more » « less
  4. Abstract A new method to synthesize complexes of the type [(CNC)RuII(NN)L]n+has been introduced, where CNC is a tridentate pincer composed of two (benz)imidazole derived NHC rings and a pyridyl ring, NN is a bidentate aromatic diimine ligand, L=bromide or acetonitrile, and n=1 or 2. Following this new method a series of six new complexes has been synthesized and characterized by spectroscopic, analytic, crystallographic, and computational methods. Their electrochemical properties have been studiedviacyclic voltammetry under both N2and CO2atmospheres. Photocatalytic reduction of CO2to CO was performed using these complexes both in the presence (sensitized) and absence (self‐sensitized) of an external photosensitizer. This study evaluates the effect of different CNC, NN, and L ligands in sensitized and self‐sensitized photocatalysis. Catalysts bearing the benzimidazole derived CNC pincer show much better activity for both sensitized and self‐sensitized photocatalysis as compared to catalysts bearing the imidazole derived CNC pincer. Furthermore, self‐sensitized photocatalysis requires a diimine ligand for CO2reduction with catalyst2ACNbeing the most active catalyst in this series with TON=85 and TOF=22 h−1with an electron donating 4,4′‐dimethyl‐2,2′‐bipyridyl (dmb) ligand and a benzimidazole derived CNC pincer. 
    more » « less
  5. null (Ed.)
    The syntheses and crystal structures of the two title compounds, C 11 H 10 O 3 ( I ) and C 17 H 14 BrNO 2 ( II ), both containing the bicyclo[2.2.2]octene ring system, are reported here [the structure of I has been reported previously: White & Goh (2014). Private Communication (refcode HOKRIK). CCDC, Cambridge, England]. The bond lengths and angles of the bicyclo[2.2.2]octene ring system are similar for both structures. The imide functional group of II features carbonyl C=O bond lengths of 1.209 (2) and 1.210 (2) Å, with C—N bond lengths of 1.393 (2) and 1.397 (2) Å. The five-membered imide ring is nearly planar, and it is positioned exo relative to the alkene bridgehead carbon atoms of the bicyclo[2.2.2]octene ring system. Non-covalent interactions present in the crystal structure of II include a number of C—H...O interactions. The extended structure of II also features C—H...O hydrogen bonds as well as C—H...π and lone pair–π interactions, which combine together to create supramolecular sheets. 
    more » « less