skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Disperse Access Considered Energy Inefficiency in Intel Optane DC Persistent Memory Servers
The Intel Optane DC Persistent Memory Module (AEP), which is the first commercial available Non-Volatile Memory (NVM) product, offers comparable performance with DRAM while providing larger capacities and data persistence. Existing researches that substitute NVM with DRAM or hybridize them are either emulator-based or focused on how to improve the energy efficiency for writes. Unfortunately, the energy efficiency of the real AEP system is less explored. Based on real AEP, we observe that even though eliminating the DRAM-like refresh energy consumptions, AEP consumes significant different energy at different performance levels. Specifically, requests with time intervals (dispersed) underperform in both performance and energy efficiency when compared with the case of requests without time intervals (compact). This disparity and parallelism exploitation potentials motivate us to propose Sprint-AEP, an energy-efficiency-oriented scheduling method for AEP-equipped servers. Sprint-AEP fully activates adequate AEPs to serve most of the requests by deferring the write requests and prefetching the hottest data. The remaining AEPs will stay in idle mode with a low idle power to save energy. Besides, we also utilize the read parallelism to accelerate the sync and prefetching processes. Compared with energy-unaware AEP usages, our experimental results show that Sprint-AEP saves up to 26% energy with little performance degradation.  more » « less
Award ID(s):
1907765
PAR ID:
10286562
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)
Page Range / eLocation ID:
921 to 931
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent advancements in 3D-stacked DRAM such as hybrid memory cube (HMC) and high-bandwidth memory (HBM) promise higher bandwidth and lower power consumption compared to traditional DDR-based DRAM. However, taking advantage of this additional bandwidth for improving the performance of real-world applications requires carefully laying out the data in memory which incurs significant programmer effort. To alleviate this programmer burden, we investigate application-specific address mapping to improve performance while minimizing manual effort. Our approach is guided by the following insights: (i) toggling activity of address bits can help determine strategies to improve parallelism within memory but this metric underestimates conflicts and (ii) modern memory controllers reorder address requests and therefore any toggling activity measured from an address trace is non-deterministic. Furthermore, our position is that analyzing individual address bits results in poor estimates for actual conflicts and exploited parallelism and that entropy needs to be calculated for groups of address bits. Therefore, we calculate window-based probabilistic entropy for groups of address bits to determine a near-optimal address mapping. We present simulation results for ten applications that show a performance improvement up to 25% over fixed address-mapping and up to 8% over previous application-specific address mapping for our proposed approach. 
    more » « less
  2. Ashvin Goel; Dalit Naor (Ed.)
    Byte-addressable non-volatile memory (NVM) allows programs to directly access storage using memory interface without going through the expensive conventional storage stack. However, direct access to NVM makes the NVM data vulnerable to software bugs and hardware errors. This issue is critical because, unlike DRAM, corrupted data can persist forever, even after the system restart. Albeit the plethora of research on NVM programs and systems, there is little focus on protecting NVM data from software bugs and hardware errors. In this paper, we propose TENET, a new NVM programming framework, which guarantees memory safety and fault tolerance to protect NVM data against software bugs and hardware errors. TENET provides the popular persistent transactional memory (PTM) programming model. TENET leverages the concurrency guarantees (i.e., ACID properties) of PTM to provide performant and cost-efficient memory safety and fault tolerance. Our evaluations show that TENET offers an enhanced protection scope at a modest performance overhead and storage cost as compared to other PTMs with partial or no memory safety and fault tolerance support. 
    more » « less
  3. The design of the buffer manager in database management systems (DBMSs) is influenced by the performance characteristics of volatile memory (DRAM) and non-volatile storage (e.g., SSD). The key design assumptions have been that the data must be migrated to DRAM for the DBMS to operate on it and that storage is orders of magnitude slower than DRAM. But the arrival of new non-volatile memory (NVM) technologies that are nearly as fast as DRAM invalidates these previous assumptions. This paper presents techniques for managing and designing a multi-tier storage hierarchy comprising of DRAM, NVM, and SSD. Our main technical contributions are a multi-tier buffer manager and a storage system designer that leverage the characteristics of NVM. We propose a set of optimizations for maximizing the utility of data migration between different devices in the storage hierarchy. We demonstrate that these optimizations have to be tailored based on device and workload characteristics. Given this, we present a technique for adapting these optimizations to achieve a near-optimal buffer management policy for an arbitrary workload and storage hierarchy without requiring any manual tuning. We finally present a recommendation system for designing a multi-tier storage hierarchy for a target workload and system cost budget. Our results show that the NVM-aware buffer manager and storage system designer improve throughput and reduce system cost across different transaction and analytical processing workloads. 
    more » « less
  4. Large language models (LLMs) have achieved high accuracy in diverse NLP and computer vision tasks due to self- attention mechanisms relying on GEMM and GEMV operations. However, scaling LLMs poses significant computational and energy challenges, particularly for traditional Von-Neumann architectures (CPUs/GPUs), which incur high latency and energy consumption from frequent data movement. These issues are even more pronounced in energy-constrained edge environments. While DRAM-based near-memory architectures offer improved energy efficiency and throughput, their processing elements are limited by strict area, power, and timing constraints. This work introduces CIDAN-3D, a novel Processing-in-Memory (PIM) architecture tailored for LLMs. It features an ultra-low-power Neuron Processing Element (NPE) with high compute density (#Operations/Area), enabling ecient in-situ execution of LLM operations by leveraging high parallelism within DRAM. CIDAN- 3D reduces data movement, improves locality, and achieves substantial gains in performance and energy efficiency—showing up to 1.3X higher throughput and 21.9X better energy efficiency for smaller models, and 3X throughput and 7X energy improvement for large decoder-only models compared to prior near-memory designs. As a result, CIDAN-3D offers a scalable, energy-efficient platform for LLM-driven Gen-AI applications. 
    more » « less
  5. The design of the buffer manager in database management systems (DBMSs) is influenced by the performance characteristics of volatile memory (i.e., DRAM) and non-volatile storage (e.g., SSD). The key design assumptions have been that the data must be migrated to DRAM for the DBMS to operate on it and that storage is orders of magnitude slower than DRAM. But the arrival of new non-volatile memory (NVM) technologies that are nearly as fast as DRAM invalidates these previous assumptions.Researchers have recently designed Hymem, a novel buffer manager for a three-tier storage hierarchy comprising of DRAM, NVM, and SSD. Hymem supports cache-line-grained loading and an NVM-aware data migration policy. While these optimizations improve its throughput, Hymem suffers from two limitations. First, it is a single-threaded buffer manager. Second, it is evaluated on an NVM emulation platform. These limitations constrain the utility of the insights obtained using Hymem. In this paper, we present Spitfire, a multi-threaded, three-tier buffer manager that is evaluated on Optane Persistent Memory Modules, an NVM technology that is now being shipped by Intel. We introduce a general framework for reasoning about data migration in a multi-tier storage hierarchy. We illustrate the limitations of the optimizations used in Hymem on Optane and then discuss how Spitfire circumvents them. We demonstrate that the data migration policy has to be tailored based on the characteristics of the devices and the workload. Given this, we present a machine learning technique for automatically adapting the policy for an arbitrary workload and storage hierarchy. Our experiments show that Spitfire works well across different workloads and storage hierarchies. 
    more » « less