We examine correlations of the Möbius function over $$\mathbb{F}_{q}[t]$$ with linear or quadratic phases, that is, averages of the form 1 $$\begin{eqnarray}\frac{1}{q^{n}}\mathop{\sum }_{\deg f0$$ if $$Q$$ is linear and $$O(q^{-n^{c}})$$ for some absolute constant $c>0$ if $$Q$$ is quadratic. The latter bound may be reduced to $$O(q^{-c^{\prime }n})$$ for some $$c^{\prime }>0$$ when $Q(f)$ is a linear form in the coefficients of $$f^{2}$$ , that is, a Hankel quadratic form, whereas, for general quadratic forms, it relies on a bilinear version of the additive-combinatorial Bogolyubov theorem.
more »
« less
Multiplicative series, modular forms, and Mandelbrot polynomials
We say a power series ∑ n = 0 ∞ a n q n \sum _{n=0}^\infty a_n q^n is multiplicative if the sequence 1 , a 2 / a 1 , … , a n / a 1 , … 1,a_2/a_1,\ldots ,a_n/a_1,\ldots is so. In this paper, we consider multiplicative power series f f such that f 2 f^2 is also multiplicative. We find a number of examples for which f f is a rational function or a theta series and prove that the complete set of solutions is the locus of a (probably reducible) affine variety over C \mathbb {C} . The precise determination of this variety turns out to be a finite computational problem, but it seems to be beyond the reach of current computer algebra systems. The proof of the theorem depends on a bound on the logarithmic capacity of the Mandelbrot set.
more »
« less
- Award ID(s):
- 1702152
- PAR ID:
- 10286572
- Date Published:
- Journal Name:
- Mathematics of Computation
- Volume:
- 90
- Issue:
- 327
- ISSN:
- 0025-5718
- Page Range / eLocation ID:
- 345 to 377
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Suppose $$F:=(f_1,\ldots,f_n)$$ is a system of random $$n$$-variate polynomials with $$f_i$$ having degree $$\leq\!d_i$$ and the coefficient of $$x^{a_1}_1\cdots x^{a_n}_n$$ in $$f_i$$ being an independent complex Gaussian of mean $$0$$ and variance $$\frac{d_i!}{a_1!\cdots a_n!\left(d_i-\sum^n_{j=1}a_j \right)!}$$. Recent progress on Smale's 17$$\thth$$ Problem by Lairez --- building upon seminal work of Shub, Beltran, Pardo, B\"{u}rgisser, and Cucker --- has resulted in a deterministic algorithm that finds a single (complex) approximate root of $$F$$ using just $$N^{O(1)}$$ arithmetic operations on average, where $$N\!:=\!\sum^n_{i=1}\frac{(n+d_i)!}{n!d_i!}$$ ($$=n(n+\max_i d_i)^{O(\min\{n,\max_i d_i)\}}$$) is the maximum possible total number of monomial terms for such an $$F$$. However, can one go faster when the number of terms is smaller, and we restrict to real coefficient and real roots? And can one still maintain average-case polynomial-time with more general probability measures? We show the answer is yes when $$F$$ is instead a binomial system --- a case whose numerical solution is a key step in polyhedral homotopy algorithms for solving arbitrary polynomial systems. We give a deterministic algorithm that finds a real approximate root (or correctly decides there are none) using just $$O(n^3\log^2(n\max_i d_i))$$ arithmetic operations on average. Furthermore, our approach allows Gaussians with arbitrary variance. We also discuss briefly the obstructions to maintaining average-case time polynomial in $$n\log \max_i d_i$$ when $$F$$ has more terms.more » « less
-
null (Ed.)In https://arxiv.org/abs/1609.00840, D. Wang and J. Yang in 2016 have posed the problem how to compute the ``third'' discriminant of a polynomial f(X) = (X-A_1) ... (X-A_n), delta_3(f) = product_{1 <= i < j < k < l <= n} ( (A_i + A_j - A_k - A_l) (A_i - A_j + A_k - A_l) (A_i - A_j - A_k + A_l) ), from the coefficients of f; note that delta_3 is a symmetric polynomial in the A_i. For complex roots, delta_3(f) = 0 if the mid-point (average) of 2 roots is equal the mid-point of another 2 roots. Iterated resultant computations yield the square of the third discriminant. We apply a symbolic homotopy by Kaltofen and Trager [JSC, vol. 9, nr. 3, pp. 301--320 (1990)] to compute its squareroot. Our algorithm use polynomially many coefficient field operations.more » « less
-
Abstract We investigate the low moments$$\mathbb {E}[|A_N|^{2q}],\, 0 of secular coefficients$$A_N$$ of the critical non-Gaussian holomorphic multiplicative chaos, i.e. coefficients of$$z^N$$ in the power series expansion of$$\exp (\sum _{k=1}^\infty X_kz^k/\sqrt{k})$$ , where$$\{X_k\}_{k\geqslant 1}$$ are i.i.d. rotationally invariant unit variance complex random variables. Inspired by Harper’s remarkable result on random multiplicative functions, Soundararajan and Zaman recently showed that if each$$X_k$$ is standard complex Gaussian,$$A_N$$ features better-than-square-root cancellation:$$\mathbb {E}[|A_N|^2]=1$$ and$$\mathbb {E}[|A_N|^{2q}]\asymp (\log N)^{-q/2}$$ for fixed$$q\in (0,1)$$ as$$N\rightarrow \infty $$ . We show that this asymptotics holds universally if$$\mathbb {E}[e^{\gamma |X_k|}]<\infty $$ for some$$\gamma >2q$$ . As a consequence, we establish the universality for the tightness of the normalized secular coefficients$$A_N(\log (1+N))^{1/4}$$ , generalizing a result of Najnudel, Paquette, and Simm. Another corollary is the almost sure regularity of some critical non-Gaussian holomorphic chaos in appropriate Sobolev spaces. Moreover, we characterize the asymptotics of$$\mathbb {E}[|A_N|^{2q}]$$ for$$|X_k|$$ following a stretched exponential distribution with an arbitrary scale parameter, which exhibits a completely different behavior and underlying mechanism from the Gaussian universality regime. As a result, we unveil a double-layer phase transition around the critical case of exponential tails. Our proofs combine Harper’s robust approach with a careful analysis of the (possibly random) leading terms in the monomial decomposition of$$A_N$$ .more » « less
-
Using Auroux’s description of Fukaya categories of symmetric products of punctured surfaces, we compute the partially wrapped Fukaya category of the complement of $k+1$ generic hyperplanes in $$\mathbb{CP}^{n}$$ , for $$k\geqslant n$$ , with respect to certain stops in terms of the endomorphism algebra of a generating set of objects. The stops are chosen so that the resulting algebra is formal. In the case of the complement of $n+2$ generic hyperplanes in $$\mathbb{C}P^{n}$$ ( $$n$$ -dimensional pair of pants), we show that our partial wrapped Fukaya category is equivalent to a certain categorical resolution of the derived category of the singular affine variety $$x_{1}x_{2}\ldots x_{n+1}=0$$ . By localizing, we deduce that the (fully) wrapped Fukaya category of the $$n$$ -dimensional pair of pants is equivalent to the derived category of $$x_{1}x_{2}\ldots x_{n+1}=0$$ . We also prove similar equivalences for finite abelian covers of the $$n$$ -dimensional pair of pants.more » « less
An official website of the United States government

