We propose a continuous-time spline-based formulation for visual-inertial odometry (VIO). Specifically, we model the poses as a cubic spline, whose temporal derivatives are used to synthesize linear acceleration and angular velocity, which are compared to the measurements from the inertial measurement unit (IMU) for optimal state estimation. The spline boundary conditions create constraints between the camera and the IMU, with which we formulate VIO as a constrained nonlinear optimization problem. Continuous-time pose representation makes it possible to address many VIO challenges, e.g., rolling shutter distortion and sensors that may lack synchronization. We conduct experiments on two publicly available datasets that demonstrate the state-of-the-art accuracy and real-time computational efficiency of our method.
more »
« less
Adaptive Continuous Visual Odometry from RGB-D Images
In this paper, we extend the recently developed continuous visual odometry framework for RGB-D cameras to an adaptive framework via online hyperparameter learning. We focus on the case of isotropic kernels with a scalar as the length-scale. In practice and as expected, the length-scale has remarkable impacts on the performance of the original framework. Previously it was handled using a fixed set of conditions within the solver to reduce the length-scale as the algorithm reaches a local minimum. We automate this process by a greedy gradient descent step at each iteration to find the next-best length-scale. Furthermore, to handle failure cases in the gradient descent step where the gradient is not wellbehaved, such as the absence of structure or texture in the scene, we use a search interval for the length-scale and guide it gradually toward the smaller values. This latter strategy reverts the adaptive framework to the original setup. The experimental evaluations using publicly available RGB-D benchmarks show the proposed adaptive continuous visual odometry outperforms the original framework and the current state-of-the-art. We also make the software for the developed algorithm publicly available.
more »
« less
- Award ID(s):
- 1808051
- PAR ID:
- 10286577
- Date Published:
- Journal Name:
- ArXivorg
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose an improved keypoint approach for 6-DoF grasp pose synthesis from RGB-D input. Keypoint-based grasp detection from image input demonstrated promising results in a previous study, where the visual information provided by color imagery compensates for noisy or imprecise depth measurements. However, it relies heavily on accurate keypoint prediction in image space. We devise a new grasp generation network that reduces the dependency on precise keypoint estimation. Given an RGB-D input, the network estimates both the grasp pose and the camera-grasp length scale. Re-design of the keypoint output space mitigates the impact of keypoint prediction noise on Perspective-n-Point (PnP) algorithm solutions. Experiments show that the proposed method outperforms the baseline by a large margin, validating its design. Though trained only on simple synthetic objects, our method demonstrates sim-to-real capacity through competitive results in real-world robot experiments.more » « less
-
null (Ed.)Abstract How to choose the step size of gradient descent method has been a popular subject of research. In this paper we propose a modified limited memory steepest descent method (MLMSD). In each iteration we propose a selection rule to pick a unique step size from a candidate set, which is calculated by Fletcher’s limited memory steepest descent method (LMSD), instead of going through all the step sizes in a sweep, as in Fletcher’s original LMSD algorithm. MLMSD is motivated by an inexact super-linear convergence rate analysis. The R-linear convergence of MLMSD is proved for a strictly convex quadratic minimization problem. Numerical tests are presented to show that our algorithm is efficient and robust.more » « less
-
In this paper, we propose an efficient and flexible algorithm to solve dynamic mean-field planning problems based on an accelerated proximal gradient method. Besides an easy-to-implement gradient descent step in this algorithm, a crucial projection step becomes solving an elliptic equation whose solution can be obtained by conventional methods efficiently. By induction on iterations used in the algorithm, we theoretically show that the proposed discrete solution converges to the underlying continuous solution as the grid becomes finer. Furthermore, we generalize our algorithm to mean-field game problems and accelerate it using multilevel and multigrid strategies. We conduct comprehensive numerical experiments to confirm the convergence analysis of the proposed algorithm, to show its efficiency and mass preservation property by comparing it with state-of-the-art methods, and to illustrate its flexibility for handling various mean-field variational problems.more » « less
-
null (Ed.)Gradient descent-based optimization methods underpin the parameter training of neural networks, and hence comprise a significant component in the impressive test results found in a number of applications. Introducing stochasticity is key to their success in practical problems, and there is some understanding of the role of stochastic gradient descent in this context. Momentum modifications of gradient descent such as Polyak’s Heavy Ball method (HB) and Nesterov’s method of accelerated gradients (NAG), are also widely adopted. In this work our focus is on understanding the role of momentum in the training of neural networks, concentrating on the common situation in which the momentum contribution is fixed at each step of the algorithm. To expose the ideas simply we work in the deterministic setting. Our approach is to derive continuous time approximations of the discrete algorithms; these continuous time approximations provide insights into the mechanisms at play within the discrete algorithms. We prove three such approximations. Firstly we show that standard implementations of fixed momentum methods approximate a time-rescaled gradient descent flow, asymptotically as the learning rate shrinks to zero; this result does not distinguish momentum methods from pure gradient descent, in the limit of vanishing learning rate. We then proceed to prove two results aimed at understanding the observed practical advantages of fixed momentum methods over gradient descent, when implemented in the non-asymptotic regime with fixed small, but non-zero, learning rate. We achieve this by proving approximations to continuous time limits in which the small but fixed learning rate appears as a parameter; this is known as the method of modified equations in the numerical analysis literature, recently rediscovered as the high resolution ODE approximation in the machine learning context. In our second result we show that the momentum method is approximated by a continuous time gradient flow, with an additional momentum-dependent second order time-derivative correction, proportional to the learning rate; this may be used to explain the stabilizing effect of momentum algorithms in their transient phase. Furthermore in a third result we show that the momentum methods admit an exponentially attractive invariant manifold on which the dynamics reduces, approximately, to a gradient flow with respect to a modified loss function, equal to the original loss function plus a small perturbation proportional to the learning rate; this small correction provides convexification of the loss function and encodes additional robustness present in momentum methods, beyond the transient phase.more » « less
An official website of the United States government

