skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Continuous-Time Spline Visual-Inertial Odometry
We propose a continuous-time spline-based formulation for visual-inertial odometry (VIO). Specifically, we model the poses as a cubic spline, whose temporal derivatives are used to synthesize linear acceleration and angular velocity, which are compared to the measurements from the inertial measurement unit (IMU) for optimal state estimation. The spline boundary conditions create constraints between the camera and the IMU, with which we formulate VIO as a constrained nonlinear optimization problem. Continuous-time pose representation makes it possible to address many VIO challenges, e.g., rolling shutter distortion and sensors that may lack synchronization. We conduct experiments on two publicly available datasets that demonstrate the state-of-the-art accuracy and real-time computational efficiency of our method.  more » « less
Award ID(s):
1637875
PAR ID:
10387638
Author(s) / Creator(s):
Date Published:
Journal Name:
Proiceedings of the 2022 International Conference on Robotics and Automation (ICRA)
Page Range / eLocation ID:
9492-9498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Inertial measurement units (IMUs) are an alternative to traditional optical motion capture systems that allow for data collection outside the lab and continuous monitoring for daily activities. In this study, a non-linear least squares optimization was used to convert IMU measurements into joint kinematics. The optimization calculates joint angles simultaneously over all time frames by optimizing B-spline nodes, without integrating any IMU measurements. This approach enables an accurate solution that works well with noisy experimental IMU data since integration errors are eliminated. 
    more » « less
  2. This paper presents an extension to visual inertial odometry (VIO) by introducing tightly-coupled fusion of magnetometer measurements. A sliding window of keyframes is optimized by minimizing re-projection errors, relative inertial errors, and relative magnetometer orientation errors. The results of IMU orientation propagation are used to efficiently transform magnetometer measurements between frames producing relative orientation constraints between consecutive frames. The soft and hard iron effects are calibrated using an ellipsoid fitting algorithm. The introduction of magnetometer data results in significant reductions in the orientation error and also in recovery of the true yaw orientation with respect to the magnetic north. The proposed framework operates in all environments with slow-varying magnetic fields, mainly outdoors and underwater. We have focused our work on the underwater domain, especially in underwater caves, as the narrow passage and turbulent flow make it difficult to perform loop closures and reset the localization drift. The underwater caves present challenges to VIO due to the absence of ambient light and the confined nature of the environment, while also being a crucial source of fresh water and providing valuable historical records. Experimental results from underwater caves demonstrate the improvements in accuracy and robustness introduced by the proposed VIO extension. 
    more » « less
  3. Vision-based state estimation is challenging in underwater environments due to color attenuation, low visibility and floating particulates. All visual-inertial estimators are prone to failure due to degradation in image quality. However, underwater robots are required to keep track of their pose during field deployments. We propose robust estimator fusing the robot's dynamic and kinematic model with proprioceptive sensors to propagate the pose whenever visual-inertial odometry (VIO) fails. To detect the VIO failures, health tracking is used, which enables switching between pose estimates from VIO and a kinematic estimator. Loop closure implemented on weighted posegraph for global trajectory optimization. Experimental results from an Aqua2 Autonomous Underwater Vehicle field deployments demonstrates the robustness of our approach over different underwater environments such as over shipwrecks and coral reefs. The proposed hybrid approach is robust to VIO failures producing consistent trajectories even in harsh conditions. 
    more » « less
  4. IEEE (Ed.)
    This paper addresses the robustness problem of visual-inertial state estimation for underwater operations. Underwater robots operating in a challenging environment are required to know their pose at all times. All vision-based localization schemes are prone to failure due to poor visibility conditions, color loss, and lack of features. The proposed approach utilizes a model of the robot's kinematics together with proprioceptive sensors to maintain the pose estimate during visual-inertial odometry (VIO) failures. Furthermore, the trajectories from successful VIO and the ones from the model-driven odometry are integrated in a coherent set that maintains a consistent pose at all times. Health-monitoring tracks the VIO process ensuring timely switches between the two estimators. Finally, loop closure is implemented on the overall trajectory. The resulting framework is a robust estimator switching between model-based and visual-inertial odometry (SM/VIO). Experimental results from numerous deployments of the Aqua2 vehicle demonstrate the robustness of our approach over coral reefs and a shipwreck. 
    more » « less
  5. This paper investigates the resilience of perception-based multi-robot coordination with wireless communication to online adversarial perception. A systematic study of this problem is essential for many safety-critical robotic applications that rely on the measurements from learned perception modules. We consider a (small) team of quadrotor robots that rely only on an Inertial Measurement Unit (IMU) and the visual data measurements obtained from a learned multi-task perception module (e.g., object detection) for downstream tasks, including relative localization and coordination. We focus on a class of adversarial perception attacks that cause misclassification, mislocalization, and latency. We propose that the effects of adversarial misclassification and mislocalization can be modeled as sporadic (intermittent) and spurious measurement data for the downstream tasks. To address this, we present a framework for resilience analysis of multi-robot coordination with adversarial measurements. The framework integrates data from Visual-Inertial Odometry (VIO) and the learned perception model for robust relative localization and state estimation in the presence of adversarially sporadic and spurious measurements. The framework allows for quantifying the degradation in system observability and stability in relation to the success rate of adversarial perception. Finally, experimental results on a multi-robot platform demonstrate the real-world applicability of our methodology for resource-constrained robotic platforms. 
    more » « less