- Award ID(s):
- 1744562
- NSF-PAR ID:
- 10286623
- Date Published:
- Journal Name:
- The Cryosphere
- Volume:
- 14
- Issue:
- 10
- ISSN:
- 1994-0424
- Page Range / eLocation ID:
- 3329 to 3347
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract. During katabatic wind events in the Terra Nova Bay and Ross Sea polynyas, wind speeds exceeded 20 m s−1, air temperatures were below −25 ℃, and the mixed layer extended as deep as 600 meters. Yet, upper ocean temperature and salinity profiles were not perfectly homogeneous, as would be expected with vigorous convective heat loss. Instead, the profiles revealed bulges of warm and salty water directly beneath the ocean surface and extending downwards tens of meters. Considering both the colder air above and colder water below, we suggest the increase in temperature and salinity reflects latent heat and salt release during unconsolidated frazil ice production within the upper water column. We use a simplified salt budget to analyze these anomalies to estimate in-situ frazil ice concentration between 332 × 10−3 and 24.4 × 10−3 kg m−3. Contemporaneous estimates of vertical mixing by turbulent kinetic energy dissipation reveal rapid convection in these unstable density profiles, and mixing lifetimes from 2 to 12 minutes. The corresponding median rate of ice production is 26 cm day−1 and compares well with previous empirical and model estimates. Our individual estimates of ice production up to 378 cm day−1 reveal the intensity of short-term ice production events during the windiest episodes of our occupation of Terra Nova Bay Polynya. How to cite: De Pace, L., Smith, M., Thomson, J., Stammerjohn, S., Ackley, S., and Loose, B.: Frazil ice growth and production during katabatic wind events in the Ross Sea, Antarctica, The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-213, in review, 2019.more » « less
-
Abstract Seasonal formation of Dense Shelf Water (DSW) in the Ross Sea is a direct precursor to Antarctic Bottom Water, which fills the deep ocean with atmospheric gases in what composes the southern limb of the solubility pump. Measurements of seawater noble gas concentrations during katabatic wind events in two Ross Sea polynyas reveal the physical processes that determine the boundary value properties for DSW. This decomposition reveals 5–6 g kg−1of glacial meltwater in DSW and sea‐ice production rates of up to 14 m yr−1within the Terra Nova Bay polynya. Despite winds upwards of 35 m s−1during the observations, air bubble injection had a minimal contribution to gas exchange, accounting for less than 0.01 μmols kg−1of argon in seawater. This suggests the slurry of frazil ice and seawater at the polynya surface inhibits air‐sea exchange. Most noteworthy is the revelation that sea‐ice formation and glacial melt contribute significantly to the ventilation of DSW, restoring 10% of the gas deficit for krypton, 24% for argon, and 131% for neon, while diffusive gas exchange contributes the remainder. These measurements reveal a cryogenic component to the solubility pump and demonstrate that while sea ice blocks air‐sea exchange, sea ice formation and glacial melt partially offset this effect via addition of gases. While polynyas are a small surface area, they represent an important ventilation site within the southern‐overturning cell, suggesting that ice processes both enhance and hinder the solubility pump.
-
Abstract Over the Ross Sea shelf, annual primary production is limited by dissolved iron (DFe) supply. Here, a major source of DFe to surface waters is thought to be vertical resupply from the benthos, which is assumed most prevalent during winter months when katabatic winds drive sea ice formation and convective overturn in coastal polynyas, although the impact of these processes on water‐column DFe distributions has not been previously documented. We collected hydrographic data and water‐column samples for trace metals analysis in the Terra Nova Bay and Ross Ice Shelf polynyas during April–May 2017 (late austral fall). In the Terra Nova Bay polynya, we observed intense katabatic wind events, and surface mixed layer depths varied from ∼250 to ∼600 m over lateral distances <10 km; there vertical mixing was just starting to excavate the dense, iron‐rich Shelf Waters, and there was also evidence of DFe inputs at shallower depths in the water column. In the Ross Ice Shelf polynya, wind speeds were lower, mixed layers were <300 m deep, and DFe distributions were similar to previous, late‐summer observations, with concentrations elevated near the seafloor. Corresponding measurements of dissolved manganese and zinc, and particulate iron, manganese, and aluminum, suggest that deep DFe maxima and some mid‐depth DFe maxima primarily reflect sedimentary inputs, rather than remineralization. Our data and model simulations imply that vertical resupply of DFe in the Ross Sea occurs mainly during mid‐late winter, and may be particularly sensitive to changes in the timing and extent of sea ice production.
-
Abstract This study examines the process of water-column stratification breakdown in Antarctic coastal polynyas adjacent to an ice shelf with a cavity underneath. This first part of a two-part sequence seeks to quantify the influence of offshore katabatic winds, alongshore winds, air temperature, and initial ambient stratification on the time scales of polynya destratification through combining process-oriented numerical simulations and analytical scaling. In particular, the often-neglected influence of wind-driven circulation on the lateral transport of the water formed at the polynya surface—which we call Polynya Source Water (PSW)—is systematically examined here. First, an ice shelf–sea ice–ocean coupled numerical model is adapted to simulate the process of PSW formation in polynyas of various configurations. The simulations highlight that (i) before reaching the bottom, majority of the PSW is actually carried away from the polynya by katabatic wind–induced offshore outflow, diminishing water-column mixing in the polynya and intrusion of the PSW into the neighboring ice shelf cavity, and (ii) alongshore coastal easterly winds, through inducing onshore Ekman transport, reduce offshore loss of the PSW and enhance polynya mixing and PSW intrusion into the cavity. Second, an analytical scaling of the destratification time scale is derived based on fundamental physical principles to quantitatively synthesize the influence of the physical factors, which is then verified by independent numerical sensitivity simulations. This work provides insights into the mechanisms that drive temporal and cross-polynya variations in stratification and PSW formation in Antarctic coastal polynyas, and establishes a framework for studying differences among the polynyas in the ocean.
-
Open-ocean polynyas formed over the Maud Rise, in the Weddell Sea, during the winters of 2016–2017. Such polynyas are rare events in the Southern Ocean and are associated with deep convection, affecting regional carbon and heat budgets. Using an ocean state estimate, we found that during 2017, early sea ice melting occurred in response to enhanced vertical mixing of heat, which was accompanied by mixing of salt. The melting sea ice compensated for the vertically mixed salt, resulting in a net buoyancy gain. An additional salt input was then necessary to destabilize the upper ocean. This came from a hitherto unexplored polynya-formation mechanism: an Ekman transport of salt across a jet girdling the northern flank of the Maud Rise. Such transport was driven by intensified eastward surface stresses during 2015–2018. Our results illustrate how highly localized interactions between wind, ocean flow and topography can trigger polynya formation in the open Southern Ocean.