Here, we report the closure resistance of a soft-material bilayer orifice increases against external pressure, along with ruga-phase evolution, in contrast to the conventional predictions of the matrix-free cylindrical-shell buckling pressure. Experiments demonstrate that the generic soft-material orifice creases in a threefold symmetry at a limit-load pressure of p / μ ≈ 1.20, where μ is the shear modulus. Once the creasing initiates, the triple crease wings gradually grow as the pressure increases until the orifice completely closes at p / μ ≈ 3.0. By contrast, a stiff-surface bilayer orifice initially wrinkles with a multifold symmetry mode and subsequently develops ruga-phase evolution, progressively reducing the orifice cross-sectional area as pressure increases. The buckling-initiation mode is determined by the layer's thickness and stiffness, and the pressure by two types of the layer's instability modes—the surface-layer-wrinkling mode for a compliant and the ring-buckling mode for a stiff layer. The ring-buckling mode tends to set the twofold symmetry for the entire post-buckling closure process, while the high-frequency surface-layer-wrinkling mode evolves with successive symmetry breaking to a final closure configuration of two- or threefold symmetry. Finally, we found that the threefold symmetry mode for the entire closure process provides the orifice's strongest closure resistance, and human saphenous veins remarkably follow this threefold symmetry ruga evolution pathway.
more »
« less
Near conformal perturbation theory in SYK type models
A bstract We present a systematic procedure to extract the dynamics of the low energy soft mode in SYK type models with a single energy scale J and emergent reparametrization symmetry in the IR. This is given in the framework of the perturbative scheme of arXiv:1608.07567 based on a specific (off-shell) breaking of conformal invariance in the UV, adjusted to yield the exact large- N saddle point. While this breaking term formally vanishes on-shell, it has a non-trivial effect on correlation functions and the effective action. In particular, it leads to the Schwarzian action with a specific coupling to bi-local matter. The method is applied to the evaluation of O (1) corrections to the correlation function of bi-locals. As a byproduct we confirm precise agreement with the explicit, symmetry breaking procedure. We provide a verification in the large q limit (Liouville theory), where the correlators can be calculated exactly at all length scales. In this case, our scheme illuminates how the enhanced O ( J ) and the subleading O (1) contributions originate from the Schwarzian dynamics of the soft mode and its interaction with h = 2 (bi-local) matter.
more »
« less
- Award ID(s):
- 1818878
- PAR ID:
- 10286720
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2020
- Issue:
- 12
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Vertical core excitation energies are obtained using a combination of the ΔSCF method and the diagonal second-order self-energy approximation. These methods are applied to a set of neutral molecules and their anionic forms. An assessment of the results with the inclusion of relativistic effects is presented. For core excitations involving delocalized symmetry orbitals, the applied composite method improves upon the overestimation of ΔSCF by providing approximate values close to experimental K-shell transition energies. The importance of both correlation and relaxation contributions to the vertical core-excited state energies, the concept of local and nonlocal core orbitals, and the consequences of breaking symmetry are discussed.more » « less
-
A bstract We find a new on-shell replica wormhole in a computation of the generating functional of JT gravity coupled to matter. We show that this saddle has lower action than the disconnected one, and that it is stable under restriction to real Lorentzian sections, but can be unstable otherwise. The behavior of the classical generating functional thus may be strongly dependent on the signature of allowed perturbations. As part of our analysis, we give an LM-style construction for computing the on-shell action of replicated manifolds even as the number of boundaries approaches zero, including a type of one-step replica symmetry breaking that is necessary to capture the contribution of the new saddle. Our results are robust against quantum corrections; in fact, we find evidence that such corrections may sometimes stabilize this new saddle.more » « less
-
We present an input/output analysis of photon-correlation experiments whereby a quantum mechanically entangled bi-photon state interacts with a material sample placed in one arm of a Hong–Ou–Mandel apparatus. We show that the output signal contains detailed information about subsequent entanglement with the microscopic quantum states in the sample. In particular, we apply the method to an ensemble of emitters interacting with a common photon mode within the open-system Dicke model. Our results indicate considerable dynamical information concerning spontaneous symmetry breaking can be revealed with such an experimental system.more » « less
-
Ergodicity, the central tenet of statistical mechanics, requires an isolated system to explore all available phase space constrained by energy and symmetry. Mechanisms for violating ergodicity are of interest for probing nonequilibrium matter and protecting quantum coherence in complex systems. Polyatomic molecules have long served as a platform for probing ergodicity breaking in vibrational energy transport. Here, we report the observation of rotational ergodicity breaking in an unprecedentedly large molecule,12C60, determined from its icosahedral rovibrational fine structure. The ergodicity breaking occurs well below the vibrational ergodicity threshold and exhibits multiple transitions between ergodic and nonergodic regimes with increasing angular momentum. These peculiar dynamics result from the molecule’s distinctive combination of symmetry, size, and rigidity, highlighting its relevance to emergent phenomena in mesoscopic quantum systems.more » « less
An official website of the United States government

