skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Assessing the performance of ΔSCF and the diagonal second-order self-energy approximation for calculating vertical core excitation energies
Vertical core excitation energies are obtained using a combination of the ΔSCF method and the diagonal second-order self-energy approximation. These methods are applied to a set of neutral molecules and their anionic forms. An assessment of the results with the inclusion of relativistic effects is presented. For core excitations involving delocalized symmetry orbitals, the applied composite method improves upon the overestimation of ΔSCF by providing approximate values close to experimental K-shell transition energies. The importance of both correlation and relaxation contributions to the vertical core-excited state energies, the concept of local and nonlocal core orbitals, and the consequences of breaking symmetry are discussed.  more » « less
Award ID(s):
1848580 2019144
PAR ID:
10420590
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
157
Issue:
8
ISSN:
0021-9606
Page Range / eLocation ID:
084115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A practical ab initio composite method for modeling x-ray absorption and non-resonant x-ray emission is presented. Vertical K-edge excitation and emission energies are obtained from core-electron binding energies calculated with spin-projected ΔHF/ΔMP and outer-core ionization potentials/electron affinities calculated with electron propagator theory. An assessment of the combined methodologies against experiment is performed for a set of small molecules containing second-row elements.

     
    more » « less
  2. We report on the implementation of Dyson orbitals within the recently introduced frozen-core (fc) core–valence separated (CVS) equation-of-motion (EOM) coupled-cluster singles and doubles (CCSD) method, which enables efficient and reliable characterization of core-level states. The ionization potential (IP) variant of fc-CVS-EOM-CCSD, in which the EOM target states have one electron less than the reference, gives access to core-ionized states thus enabling modeling of X-ray photoelectron spectra (XPS) and its time-resolved variant (TR-XPS). Dyson orbitals are reduced quantities that can be interpreted as correlated states of the ejected/attached electron; they enter the expressions of various experimentally relevant quantities. In the context of photoelectron spectroscopy, Dyson orbitals can be used to estimate the strengths of photoionization transitions. We illustrate the utility of Dyson orbitals and fc-CVS-EOM-IP-CCSD by calculating XPS of the ground state of adenine and TR-XPS of the excited states of uracil. 
    more » « less
  3. Many seemingly contradictory experimental findings concerning the superconducting state in Sr2RuO4 can be accounted for on the basis of a conjectured accidental degeneracy between two patterns of pairing that are unrelated to each other under the (D4h) symmetry of the crystal: a dx2-y2-wave (B1g) and a gxy(x2-y2)-wave (A2g) superconducting state. In this paper, we propose a generic multiband model in which the g-wave pairing involving the xz and yz orbitals arises from second-nearest-neighbor BCS channel effective interactions. Even if timereversal symmetry is broken in a d + ig state, such a superconductor remains gapless with a Bogoliubov Fermi surface that approximates a (vertical) line node. The model gives rise to a strain-dependent splitting between the critical temperature Tc and the time-reversal symmetry-breaking temperature TTRSB that is qualitatively similar to some of the experimental observations in Sr2RuO4. 
    more » « less
  4. We review the ab initio symmetry-adapted (SA) framework for determining the structure of stable and unstable nuclei, along with related electroweak, decay, and reaction processes. This framework utilizes the dominant symmetry of nuclear dynamics, the shape-related symplectic [Formula: see text] symmetry, which has been shown to emerge from first principles and to expose dominant degrees of freedom that are collective in nature, even in the lightest species or seemingly spherical states. This feature is illustrated for a broad scope of nuclei ranging from helium to titanium isotopes, enabled by recent developments of the ab initio SA no-core shell model expanded to the continuum through the use of the SA basis and that of the resonating group method. The review focuses on energies, electromagnetic transitions, quadrupole and magnetic moments, radii, form factors, and response function moments for ground-state rotational bands and giant resonances. The method also determines the structure of reaction fragments that is used to calculate decay widths and α-capture reactions for simulated X-ray burst abundance patterns, as well as nucleon–nucleus interactions for cross sections and other reaction observables. 
    more » « less
  5. We present an ab initio computational study of the Auger electron spectrum of benzene. Auger electron spectroscopy exploits the Auger–Meitner effect, and although it is established as an analytic technique, the theoretical modeling of molecular Auger spectra from first principles remains challenging. Here, we use coupled-cluster theory and equation-of-motion coupled-cluster theory combined with two approaches to describe the decaying nature of core-ionized states: (i) Feshbach–Fano resonance theory and (ii) the method of complex basis functions. The spectra computed with these two approaches are in excellent agreement with each other and also agree well with experimental Auger spectra of benzene. The Auger spectrum of benzene features two well-resolved peaks at Auger electron energies above 260 eV, which correspond to final states with two electrons removed from the 1 e 1 g and 3 e 2 g highest occupied molecular orbitals. At lower Auger electron energies, the spectrum is less well resolved, and the peaks comprise multiple final states of the benzene dication. In line with theoretical considerations, singlet decay channels contribute more to the total Auger intensity than the corresponding triplet decay channels. 
    more » « less