skip to main content

Title: Improving Teacher Noticing of Students’ Science Ideas with a Dashboard
We explore how a Teacher Action Planner (TAP) that synthesizes student ideas impacts teacher noticing. The TAP uses Natural Language Processing (NLP) to detect student ideas in written explanations. We compared teacher noticing while using the TAP to noticing when reviewing student explanations. The TAP helped teachers deepen their analysis of student ideas. We did not see any impact on immediate instructional practice. We propose redesigns to the TAP to better connect noticing to instruction.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
de Vries, E.; Hod, Y.; Ahn, J.
Date Published:
Journal Name:
Computersupported collaborative learning
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This design-based research takes advantage of advanced technologies to support teachers to rapidly respond to evidence about student ideas generated in their classrooms. Leveraging advances in natural language processing methods, the Teacher Action Planner (TAP) analyzes students’ written explanations embedded in web-based inquiry projects to provide teachers with a report on student progress in developing the three-dimensional understanding called for by the Next Generation Science Standards. Based on the pattern in student scores, the TAP recommends research-based ways for teachers to customize instruction. This study examines how ten middle school teachers in 4 schools used the analysis of student ideas and suggestions for instructional customization presented in the TAP. This paper reports on how well their implemented customizations addressed student learning needs. It concludes with a discussion of the implications of the findings for redesign of the TAP. 
    more » « less
  2. Herron, J. (Ed.)
    Teacher noticing is a crucial facet of math and science teacher education, with one goal being to shift preservice teachers’ (PSTs) noticing from teacher-centered to student-centered. In this study, we used 360 videos to examine PSTs’ choices of where to look in a classroom. We discuss differences in attending behavior of those PSTs who focused on the specific themes of teachers’ scaffolding and student engagement. 
    more » « less
  3. Blikstein, P. ; Van Aalst, J. ; Kizito, R. ; Brennan, K. (Ed.)
    Past research shows that teacher noticing matters for student learning, but little is known about the effects of AI-based tools designed to augment teachers’ attention and sensemaking. In this paper, we investigate three multimodal measures of teacher noticing (i.e., gaze, deep dive into learning analytics in a teacher tool, and visits to individual students), gleaned from a mixed reality teacher awareness tool across ten classrooms. Our analysis suggests that of the three noticing measures, deep dive exhibited the largest association with learning gains when adjusting for students’ prior knowledge and tutor interactions. This finding may indicate that teachers identified students most in need based on the deep dive analytics and offered them support. We discuss how these multimodal measures can make the constraints and effects of teacher noticing in human-AI partnered classrooms visible. 
    more » « less
  4. Abstract

    How teachers attend to and interpret positive relational interactions shapes how they enact instructional practices for equity. We draw on frameworks from equitable mathematics instruction, relational interactions, and teacher noticing to conceptualize mathematics teachers’ relational noticing. Using noticing interview and classroom observation data from a research collaborative between secondary mathematics teachers and university-based teacher educators, we document the range and diversity of ten teachers’ relational noticing. We use this analysis to examine how teachers’ relational noticing supports enacting equitable instructional practices. Our findings indicate five themes of teachers’ relational noticing that are informed by their personal histories, understanding of dominant narratives of mathematics education, and their local sociopolitical school context. Additionally, teachers enacted a range of practices for creating positive relational interactions, with attending to student thinking being the most enacted practice. Our findings suggest that mathematics teachers’ relational noticing can support the three axes of equitable instruction.

    more » « less
  5. Abstract

    The practice of teacher noticing students' mathematical thinking often includes three interrelated components: attending to students' strategies, interpreting students' understandings, and deciding how to respond on the basis of students' understanding. This practice gains complexity in technology‐mediated environments (i.e., using technology‐enhanced math tasks) because it requires attending to and interpreting students' engagement with technology. Current frameworks implicitly assume the practice includes noticing the ways students use tools (including technology tools) in their work, but do not explicitly highlight the role of the tool. While research has shown that using these frameworks supports preservice secondary mathematics teachers (PSTs) developing noticing practices, it has also shown that PSTs largely overlook students' technology engagement when they are working on technology‐enhanced tasks (Journal for Research in Mathematics Education, 2010; 41(2):169–202). In this article, we describe our adaptation of Jacobs et al.'s framework for teacher noticing student mathematical thinking to include a focus on making students' technology‐tool engagement explicit when noticing in technology‐mediated environments, the Noticing in Technology‐Mediated Environments (NITE) framework. We describe the theoretical foundations of the framework, provide a video case example, and then illustrate how the framework can be used by mathematics teacher educators to support PSTs' noticing when students are working in technology‐mediated environments.

    more » « less