skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparative Use of Hydrologic Indicators to Determine the Effects of Flow Regimes on Water Quality in Three Channels across Southern Florida, USA
This study determines the relationships between water flow and water quality in three types of channels in southern Florida, USA: Shark River Slough, Peace River, and Hillsboro Canal. Peace River most resembles a natural channel with floodplain connectivity, sinuosity, and uninhibited flow. Shark River Slough has a natural, shallow channel with sheet flow, while the Hillsboro Canal is the most modified channel due to dredging, straightening, and regulated flow. Hydrologic indices for each channel were estimated to characterize flow regimes and flow variability, while concentration–discharge (C–Q) relationships were determined to quantify the impact of flow regime on water quality. The greatest variability in flow occurred at the Hillsboro Canal, followed by Peace River and Shark River Slough. Connectivity to floodplains and long durations of low and high flow pulses at Peace River and Shark River Slough contributed to the dilution of water quality constituent concentrations at higher flows. Conversely, the channelized characteristics of the Hillsboro Canal resulted in an enrichment of constituents, especially during high flows. This study suggests that C–Q relationships can be used in canal discharge management to prevent water quality degradation of sensitive downstream wetland and aquatic ecosystems.  more » « less
Award ID(s):
2025954
PAR ID:
10287064
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Water
Volume:
13
Issue:
16
ISSN:
2073-4441
Page Range / eLocation ID:
2184
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This is the AmeriFlux version of the carbon flux data for the site US-Skr Shark River Slough (Tower SRS-6) Everglades. Site Description - The Florida Everglades Shark River Slough Mangrove Forest site is located along the Shark River in the western region of Everglades National Park. Also referred to as site SRS6 of the Florida Coastal Everglades LTER program, freshwater in the mangrove riverine floods the forest floor under a meter of water twice per day. Transgressive discharge of freshwater from the Shark river follows annual rainfall distributions between the wet and dry seasons. Hurricane Wilma struck the site in October of 2005 causing significant damage. The tower was offline until the following October in order to continue temporally consistent measurements. In post-hurricane conditions, ecosystem respiration rates and solar irradiance transfer increased. 2007- 2008 measurements indicate that these factors led to an decline in both annual -NEE and daily NEE from pre-hurricane conditions in 2004-2005. 
    more » « less
  2. How does the physical and chemical structure of the Critical Zone (CZ), defined as the zone from treetops to the bottom of groundwater, govern its hydro-biogeochemical functioning? Multiple lines of evidence from past and newly emerging research have prompted the shallow and deep partitioning concentration-discharge (C-Q) hypothesis. The hypothesis states that in-stream C-Q relationships are shaped by distinct source waters from flow paths at different depths. Base flows are often dominated by deep groundwater and mostly reflect groundwater chemistry, whereas high flows are often dominated by shallow soil water and thus mostly reflect soil water chemistry. The contrasts between shallow soil water versus deeper groundwater chemistry shape stream solute export patterns. In this context, the vertical connectivity that regulates the shallow and deep flow partitioning is essential in determining chemical contrasts, biogeochemical reaction rates in soils and parent rocks, and ultimately solute export patterns. This talk will highlight insights gleaned from multiple lines of recent studies that include collation of water chemistry data from soils, rocks, and streams in intensively monitored watersheds, meta-analysis of stream chemistry data at the continental scale, and integrated reactive transport modeling at the hillslope and watershed scales. The hypothesis underscores the importance of subsurface vertical structure and connectivity relative to the extensively studied horizontal connectivity. It also alludes to the potential of using streams as mirrors for subsurface water chemistry, and the potential of using C-Q relationships to infer flow paths and biogeochemical reaction rates and the response of earth’s subsurface to climate and human perturbations. Broadly, this simple conceptual framework links CZ subsurface structure to its functioning under diverse climate, geology, and land cover conditions. 
    more » « less
  3. null (Ed.)
    Northeast Shark River Slough (NESS), lying at the northeastern perimeter of Everglades National Park (ENP), Florida, USA, has been subjected to years of hydrologic modifications. Construction of the Tamiami Trail (US 41) in 1928 connected the east and west coasts of SE Florida and essentially created a hydrological barrier to southern sheet flow into ENP. Recently, a series of bridges were constructed to elevate a portion of Tamiami Trail, allow more water to flow under the bridges, and attempt to restore the ecological balance in the NESS and ENP. This project was conducted to determine aspects of soil physiochemistry and microbial dynamics in the NESS. We evaluated microbial respiration and enzyme assays as indicators of nutrient dynamics in NESS soils. Soil cores were collected from sites at certain distances from the inflow (near canal, NC (0–150 m); midway, M (150–600 m); and far from canal, FC (600–1200 m)). Soil slurries were incubated and assayed for CO2 emission and β-glucoside (MUFC) or phosphatase (MUFP) activity in concert with physicochemical analysis. Significantly higher TP contents at NC (2.45 times) and M (1.52 times) sites than FC sites indicated an uneven P distribution downstream from the source canal. The highest soil organic matter content (84%) contents were observed at M sites, which was due to higher vegetation biomass observed at those sites. Consequently, CO2 efflux was greater at M sites (average 2.72 µmoles g dw−1 h−1) than the other two sites. We also found that amendments of glucose increased CO2 efflux from all soils, whereas the addition of phosphorus did not. The results indicate that microbial respiration downstream of inflows in the NESS is not limited by P, but more so by the availability of labile C. 
    more » « less
  4. Abstract The elevation of natural river levees can vary considerably along the length of a river, and low‐lying features such as secondary floodplain channels allow for hydrologic exchange between a river and its floodplain over a range of discharges. This hydrologic, “river‐floodplain connectivity” plays a role in attenuating flood waves and transporting fluvial material to floodplain ecosystems. However, flood wave attenuation and transport are also limited by the available storage provided by floodplains. In this study, we explore the combined controls of river‐floodplain connectivity and floodplain width on flood wave attenuation and transport, and how those controls change as flood magnitude increases. We develop idealized river‐floodplain models based on the geometry of the lower Trinity River in Texas, USA, varying floodplain width, peak discharge, and degree of river‐floodplain connectivity, which we prescribe by varying the width of a secondary channel connecting the river to the floodplain. We show that attenuation transitions from connectivity‐limited to storage‐limited as discharge increases. Secondary channel conveyance allows for floodplain inundation at lower discharges, but also fills the floodplain faster and, for larger floods, can cause higher flood peaks downstream. Greater secondary channel conveyance and wider floodplains increase fluxes to the floodplain, but secondary conveyance allows the floodplain to drain faster while wider floodplains have longer average residence times. This study presents a framework for understanding how secondary channel conveyance and floodplain width combine to modulate lateral flow exchange, residence times, and flood wave attenuation, and can guide successful management of river systems and future restoration efforts. 
    more » « less
  5. Concentration-discharge (C-Q) relationships of total suspended solids (TSS), total dissolved solids (TDS), particulate organic carbon (POC), and dissolved organic carbon (DOC) were investigated in the tributaries and main-stems of two mountainous river systems with distinct watershed characteristics (Eel and Umpqua rivers) in Northern California and central Oregon (USA). Power-law (C = a × Q b) fits to the data showed strong transport-limited behavior (b > 1) by TSS and POC, moderate transport limitation of DOC (b > 0.3) and chemostatic behavior (b < 0) by TDS in most streams. These contrasts led to significant compositional differences at varying discharge levels, with particle-bound constituents becoming increasingly important (relative abundances of 50% to >90%) at high-flow conditions. Organic carbon contents of TSS displayed marked decreases with discharge whereas they increased in TDS during high-flow conditions. Daily and cumulative material fluxes for different coastal streams were calculated using the C-Q relationships and showed that the delivery of transport-limited constituents, such as TSS and POC (and DOC to a lesser degree), was closely tied to high-discharge events and occurred primarily during the winter season. The coherence between winter fluxes and high wave-southerly wind conditions along the coast highlights how seasonal and inter-annual differences in fluvial discharge patterns affect the fate of land-derived materials delivered to coastal regions. 
    more » « less