skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Microbial Respiration and Enzyme Activity Downstream from a Phosphorus Source in the Everglades, Florida, USA
Northeast Shark River Slough (NESS), lying at the northeastern perimeter of Everglades National Park (ENP), Florida, USA, has been subjected to years of hydrologic modifications. Construction of the Tamiami Trail (US 41) in 1928 connected the east and west coasts of SE Florida and essentially created a hydrological barrier to southern sheet flow into ENP. Recently, a series of bridges were constructed to elevate a portion of Tamiami Trail, allow more water to flow under the bridges, and attempt to restore the ecological balance in the NESS and ENP. This project was conducted to determine aspects of soil physiochemistry and microbial dynamics in the NESS. We evaluated microbial respiration and enzyme assays as indicators of nutrient dynamics in NESS soils. Soil cores were collected from sites at certain distances from the inflow (near canal, NC (0–150 m); midway, M (150–600 m); and far from canal, FC (600–1200 m)). Soil slurries were incubated and assayed for CO2 emission and β-glucoside (MUFC) or phosphatase (MUFP) activity in concert with physicochemical analysis. Significantly higher TP contents at NC (2.45 times) and M (1.52 times) sites than FC sites indicated an uneven P distribution downstream from the source canal. The highest soil organic matter content (84%) contents were observed at M sites, which was due to higher vegetation biomass observed at those sites. Consequently, CO2 efflux was greater at M sites (average 2.72 µmoles g dw−1 h−1) than the other two sites. We also found that amendments of glucose increased CO2 efflux from all soils, whereas the addition of phosphorus did not. The results indicate that microbial respiration downstream of inflows in the NESS is not limited by P, but more so by the availability of labile C.  more » « less
Award ID(s):
1832229 2025954
NSF-PAR ID:
10276878
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Land
Volume:
10
Issue:
7
ISSN:
2073-445X
Page Range / eLocation ID:
696
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hurricanes can alter the rates and trajectories of biogeochemical cycling in coastal wetlands. Defoliation and vegetation death can lead to increased soil temperatures, and storm surge can variously cause erosion or deposition of sediment leading to changes in soil bulk density, nutrient composition, and redox characteristics. The objective of this study was to compare the biogeochemistry of pre-storm soils and a carbonate-rich sediment layer deposited by Hurricane Irma that made landfall in southwest Florida as a category 3 storm in September 2017. We predicted that indicators of biogeochemical activity (e.g., potential soil respiration rates, microbial biomass (MBC), and extracellular enzyme activities) would be lower in the storm sediment layer because of its lower organic matter content relative to pre-storm soils. There were few differences between the storm sediment and pre-storm soils at two of the sites closest to the Gulf of Mexico (GOM). This suggests that marine deposition regularly influences soil formation at these sites and is not something that occurs only during hurricanes. At a third site, 8 km from the GOM, the pre-storm soils had much greater concentrations of organic matter, total N, total P, MBC, and higher potential respiration rates than the storm layer. At this same site, CO2 fluxes from intact soil cores containing a layer of storm sediment were 30% lower than those without it. This suggests that sediment deposition from storm surge has the potential to preserve historically sequestered carbon in coastal soils through reduced respiratory losses. 
    more » « less
  2. httpsessopenarchiveorgeditorial-board (Ed.)
    Building healthy soils that store more carbon and reduce greenhouse gas (GHG) emissions while increasing food security is a multi-pronged climate action for the world. This work examines affordable technologies for rapidly assessing soil surface efflux of carbon dioxide quickly and accurately at multiple locations over short time periods (approximately 1 hr) in agricultural fields. Soil carbon dioxide efflux or respiration rate is known to be a strong function of soil texture, moisture content, and temperature. Thus, spatiotemporal variation of the efflux signal is complex and dynamic, particularly when soil texture and irrigation patterns are heterogenous. We use a combination of computational modeling and empirical measurement to study this problem at the UC Merced Experimental Smart Farm, on a roughly 2 ha track of flood-irrigated land. Using computation model (Hydrus 1d), we simulate soil conditions and CO2 emissions for a variety of ambient temperature and irrigation conditions. We calibrated the model parameters using efflux data obtained during multiple sampling campaigns using low-cost CO2 efflux chambers. Results indicate that relatively elevated emissions occur as key soil pore pathways drain following irrigation events. The timing of these emissions depends strongly on soil texture, with tighter clayey soils causing more dramatic “hot moments” and more smoothly draining sandy soils. While initial campaigns were carried out by researchers, future campaigns are being planned in which robotic micro-tractors will be equipped with the CO2 chambers and maneuvered using path planning algorithms programmed to adequately characterize the field-scale CO2 efflux while performing their primary agricultural functions. In this context, the farmer can monitor and achieve compliance with GHG emission goals with a minimal time investment. 
    more » « less
  3. Wetland restoration requires managing long‐term changes in hydroperiod and ecosystem functions. We quantified relationships among spatiotemporal variability in wetland hydrology and total phosphorus (TP) and its stoichiometric relationships with total organic carbon (TOC:TP) and total carbon (TC:TP) and total nitrogen (TN:TP) in water, flocculent organic matter (floc), periphyton, sawgrass (Cladium jamaicense), and soil during early phases of freshwater wetland restoration—water year (WY) 2016 (1 May, 2015 to 30 April, 2016) to WY 2019—in Everglades National Park (ENP, Homestead, FL, U.S.A.). Wetland hydroperiod increased by 87 days, following restoration actions and rainfall events that increased median stage in the upstream source canal. Concentrations of TP were highest and most variable at sites closest (<1 km) to canal inputs and upstream wetland sources of legacy P. Surface water TOC:TP and TN:TP ratios were highest in wetlands >1 km downstream of the canal in wet season 2015 with spatial variability reflecting disturbances including droughts, fires, and freeze events. The TP concentrations of flocculent soil surface particles, periphyton, sawgrass, and consolidated soil declined, and TC:TP and TN:TP ratios increased (except soil) logarithmically with downstream distance from the canal. We measured abrupt increases in periphyton (wet season 2018) and sawgrass TP (wet season 2015 and 2018) at sites <1 km from the canal, likely reflecting legacy TP loading. Our results suggest restoration efforts that increase freshwater inflow and hydroperiod will likely change patterns of nutrient concentrations among water and organic matter compartments of wetlands as a function of nutrient legacies.

     
    more » « less
  4. Dissolved organic carbon (DOC) was leached from permafrost soils near the Toolik Field Station in the Alaskan Arctic, either kept in the dark or exposed to light treatments, and then incubated with native permafrost microbial communities. The radiocarbon (14C) and stable carbon (13C) isotopic compositions of the initial DOC present in the dark or light-exposed permafrost soil leachates and the carbon dioxide (CO2) produced by microbial respiration of dark or light-exposed permafrost DOC were quantified. 
    more » « less
  5. Abstract

    Coastal ecosystems are exposed to saltwater intrusion but differential effects on biogeochemical cycling are uncertain. We tested how elevated salinity and phosphorus (P) individually and interactively affect microbial activities and biogeochemical cycling in freshwater and brackish wetland soils. In experimental mesocosms, we added crossed gradients of elevated concentrations of soluble reactive P (SRP) (0, 20, 40, 60, 80 μg/L) and salinity (0, 4, 7, 12, 16 ppt) to freshwater and brackish peat soils (10, 14, 17, 22, 26 ppt) for 35 d. We quantified changes in water chemistry [dissolved organic carbon (DOC), ammonium (), nitrate + nitrite (N + N), SRP concentrations], soil microbial extracellular enzyme activities, respiration rates, microbial biomass C, and soil chemistry (%C, %N, %P, C:N, C:P, N:P). DOC, , and SRP increased in freshwater but decreased in brackish mesocosms with elevated salinity. DOC similarly decreased in brackish mesocosms with added P, and N + N decreased with elevated salinity in both freshwater and brackish mesocosms. In freshwater soils, water column P uptake occurred only in the absence of elevated salinity and when P was above 40 µg/L. Freshwater microbial EEAs, respiration rates, and microbial biomass C were consistently higher compared to those from brackish soils, and soil phosphatase activities and microbial respiration rates in freshwater soils decreased with elevated salinity. Elevated salinity increased arylsulfatase activities and microbial biomass C in brackish soils, and elevated P increased microbial respiration rates in brackish soils. Freshwater soil %C, %N, %P decreased and C:P and N:P increased with elevated salinity. Elevated P increased %C and C:N in freshwater soils and increased %P but decreased C:P and N:P in brackish soils. Freshwater soils released more C and nutrients than brackish soils when exposed to elevated salinity, and both soils were less responsive to elevated P than expected. Freshwater soils became more nutrient‐depleted with elevated salinity, whereas brackish soils were unaffected by salinity but increased P uptake. Microbial activities in freshwater soils were inhibited by elevated salinity and unaffected by added P, but brackish soil microbial activities slightly increased with elevated salinity and P.

     
    more » « less