skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AICov: An Integrative Deep Learning Framework for COVID-19 Forecasting with Population Covariates
The COVID-19 (COrona VIrus Disease 2019) pandemic has had profound global consequences on health, economic, social, behavioral, and almost every major aspect of human life. Therefore, it is of great importance to model COVID-19 and other pandemics in terms of the broader social contexts in which they take place. We present the architecture of an artificial intelligence enhanced COVID-19 analysis (in short AICov), which provides an integrative deep learning framework for COVID-19 forecasting with population covariates, some of which may serve as putative risk factors. We have integrated multiple different strategies into AICov, including the ability to use deep learning strategies based on Long Short-Term Memory (LSTM) and event modeling. To demonstrate our approach, we have introduced a framework that integrates population covariates from multiple sources. Thus, AICov not only includes data on COVID-19 cases and deaths but, more importantly, the population’s socioeconomic, health, and behavioral risk factors at their specific locations. The compiled data are fed into AICov, and thus we obtain improved prediction by the integration of the data to our model as compared to one that only uses case and death data. As we use deep learning our models adapt over time while learning the model from past data.  more » « less
Award ID(s):
1829704 1918626 1835631 1443054 2151597 2210266
PAR ID:
10287098
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Data Science
Volume:
19
Issue:
2
ISSN:
1680-743X
Page Range / eLocation ID:
293 to 313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ongoing COVID-19 pandemic has created major public health and socio-economic challenges across the United States. Among them are challenges to the educational system where college administrators are struggling with the questions of how to mitigate the risk and spread of diseases on their college campus. To help address this challenge, we developed a flexible computational framework to model the spread and control of COVID-19 on a residential college campus. The modeling framework accounts for heterogeneity in social interactions, activities, environmental and behavioral risk factors, disease progression, and control interventions. The contribution of mitigation strategies to disease transmission was explored without and with interventions such as vaccination, quarantine of symptomatic cases, and testing. We show that even with high vaccination coverage (90%) college campuses may still experience sizable outbreaks. The size of the outbreaks varies with the underlying environmental and socio-behavioral risk factors. Complementing vaccination with quarantine and mass testing was shown to be paramount for preventing or mitigating outbreaks. Though our quantitative results are likely provisional on our model assumptions, sensitivity analysis confirms the robustness of their qualitative nature. 
    more » « less
  2. Abstract Background The COVID-19 pandemic has caused more than 25 million cases and 800 thousand deaths worldwide to date. In early days of the pandemic, neither vaccines nor therapeutic drugs were available for this novel coronavirus. All measures to prevent the spread of COVID-19 are thus based on reducing contact between infected and susceptible individuals. Most of these measures such as quarantine and self-isolation require voluntary compliance by the population. However, humans may act in their (perceived) self-interest only. Methods We construct a mathematical model of COVID-19 transmission with quarantine and hospitalization coupled with a dynamic game model of adaptive human behavior. Susceptible and infected individuals adopt various behavioral strategies based on perceived prevalence and burden of the disease and sensitivity to isolation measures, and they evolve their strategies using a social learning algorithm (imitation dynamics). Results This results in complex interplay between the epidemiological model, which affects success of different strategies, and the game-theoretic behavioral model, which in turn affects the spread of the disease. We found that the second wave of the pandemic, which has been observed in the US, can be attributed to rational behavior of susceptible individuals, and that multiple waves of the pandemic are possible if the rate of social learning of infected individuals is sufficiently high. Conclusions To reduce the burden of the disease on the society, it is necessary to incentivize such altruistic behavior by infected individuals as voluntary self-isolation. 
    more » « less
  3. The COVID-19 preparedness plans by the Centers for Disease Control and Prevention strongly underscores the need for efficient and effective testing strategies. This, in turn, calls upon the design and development of statistical sampling and testing of COVID-19 strategies. However, the evaluation of operational details requires a detailed representation of human behaviors in epidemic simulation models. Traditional epidemic simulations are mainly based upon system dynamic models, which use differential equations to study macro-level and aggregated behaviors of population subgroups. As such, individual behaviors (e.g., personal protection, commute conditions, social patterns) can’t be adequately modeled and tracked for the evaluation of health policies and action strategies. Therefore, this paper presents a network-based simulation model to optimize COVID-19 testing strategies for effective identifications of virus carriers in a spatial area. Specifically, we design a data-driven risk scoring system for statistical sampling and testing of COVID-19. This system collects real-time data from simulated networked behaviors of individuals in the spatial network to support decision-making during the virus spread process. Experimental results showed that this framework has superior performance in optimizing COVID-19 testing decisions and effectively identifying virus carriers from the population. 
    more » « less
  4. null (Ed.)
    We examine the uneven social and spatial distributions of COVID-19 and their relationships with indicators of social vulnerability in the U.S. epicenter, New York City (NYC). As of July 17th, 2020, NYC, despite having only 2.5% of the U.S. population, has [Formula: see text]6% of all confirmed cases, and [Formula: see text]16% of all deaths, making it a key learning ground for the social dynamics of the disease. Our analysis focuses on the multiple potential social, economic, and demographic drivers of disproportionate impacts in COVID-19 cases and deaths, as well as population rates of testing. Findings show that immediate impacts of COVID-19 largely fall along lines of race and class. Indicators of poverty, race, disability, language isolation, rent burden, unemployment, lack of health insurance, and housing crowding all significantly drive spatial patterns in prevalence of COVID-19 testing, confirmed cases, death rates, and severity. Income in particular has a consistent negative relationship with rates of death and disease severity. The largest differences in social vulnerability indicators are also driven by populations of people of color, poverty, housing crowding, and rates of disability. Results highlight the need for targeted responses to address injustice of COVID-19 cases and deaths, importance of recovery strategies that account for differential vulnerability, and provide an analytical approach for advancing research to examine potential similar injustice of COVID-19 in other U.S. cities. Significance Statement Communities around the world have variable success in mitigating the social impacts of COVID-19, with many urban areas being hit particularly hard. Analysis of social vulnerability to COVID-19 in the NYC, the U.S. national epicenter, shows strongly disproportionate impacts of the pandemic on low income populations and communities of color. Results highlight the class and racial inequities of the coronavirus pandemic in NYC, and the need to unpack the drivers of social vulnerability. To that aim, we provide a replicable framework for examining patterns of uneven social vulnerability to COVID-19- using publicly available data which can be readily applied in other study regions, especially within the U.S.A. This study is important to inform public and policy debate over strategies for short- and long-term responses that address the injustice of disproportionate impacts of COVID-19. Although similar studies examining social vulnerability and equity dimensions of the COVID-19 outbreak in cities across the U.S. have been conducted (Cordes and Castro 2020, Kim and Bostwick 2002, Gaynor and Wilson 2020; Wang et al. 2020; Choi and Unwin 2020), this study provides a more comprehensive analysis in NYC that extends previous contributions to use the highest resolution spatial units for data aggregation (ZCTAs). We also include mortality and severity rates as key indicators and provide a replicable framework that draws from the Centers for Disease Control and Prevention’s Social Vulnerability indicators for communities in NYC. 
    more » « less
  5. Deep Learning for Time-series plays a key role in AI for healthcare. To predict the progress of infectious disease outbreaks and demonstrate clear population-level impact, more granular analyses are urgently needed that control for important and potentially confounding county-level socioeconomic and health factors. We forecast US county-level COVID-19 infections using the Temporal Fusion Transformer (TFT). We focus on heterogeneous time-series deep learning model prediction while interpreting the complex spatiotemporal features learned from the data. The significance of the work is grounded in a real-world COVID-19 infection prediction with highly non-stationary, finely granular, and heterogeneous data. 1) Our model can capture the detailed daily changes of temporal and spatial model behaviors and achieves better prediction performance compared to other time-series models. 2) We analyzed the attention patterns from TFT to interpret the temporal and spatial patterns learned by the model. 3) We collected around 2.5 years of socioeconomic and health features for 3142 US counties, such as observed cases, and a number of static (age distribution and health disparity) and dynamic features (vaccination, disease spread, transmissible cases, and social distancing). Using the proposed framework, we have shown that our model can learn complex interactions. Interpreting different impacts at the county level would be crucial for understanding the infection process that can help effective public health decision-making. 
    more » « less