The hands-on approach in teaching and learning is an important resource to be explored because it offers a meaningful platform for student-instructor interaction that fosters sound scientific reasoning and improves the understanding of abstract chemistry concepts. Experiment-centric pedagogy (ECP) is a contemporary teaching approach that integrates active student participation in problem-based activities through hands-on mobile devices. This paper describes how experiment-centric pedagogy (ECP) has been used to teach key chemistry concepts to undergraduate students in the chemistry discipline at Historically Black University (HBCU). To assess whether ECP achieves a lasting increase in undergraduate student curiosity and engagement in the chemistry discipline, ECP was implemented from Fall 2021 to Fall 2022 using an inexpensive, safe, and portable electronic instrumentation system usable in both classrooms and laboratories. The Motivated Strategies for Learning Questionnaire developed by Pintrich, Smith, García, and McKeachie in 1991 was used to measure the key constructs associated with students’ curiosity and engagement. The classroom observation protocol (COPUS) was used to assess instructors’ effectiveness, and signature assignments were used to evaluate knowledge gains.
more »
« less
Chemistry and Transportation Engineering Experiment-Centric Pedagogy with Hands-on Labs
Abstract This project developed small, portable sensor-based experiments as an alternative to those conducted in a traditional laboratory setting. Experiment-centric pedagogy was used in this study and hands-on laboratory experiments were developed using USB-based measurement devices (ADALM 1000) and ADALM2000). Three experiments were developed for Chemistry namely pH meter, thermochemistry, and spectrophotometry. During pH settlement, the voltage was recorded, and the calibration curve drawn using standard buffers 4, 7, and 10. Furthermore, thermochemistry results were performed and validated using a digital thermometer. R2 curves have been found to yield good results for both experiments. Department of Transportation worked on four experiments which include vehicle counter, accelerometer, decibel meter, and a soil moisture meter. Data was recorded from each setup. Since the sensors provided results as voltages, a transfer function equation was used to convert the reading to the required unit of expression to validate the results from the USB device. These experiments were developed by pairing a graduate student in electrical engineering with a student in another discipline during a 10-week summer workshop. Student trainees underwent different training sessions that comprise of developing and testing instruments for measurement, attending the ASEE virtual conference, and research workshops. Students also read and summarized articles on the use of experimental pedagogy to motivate students. This study is designed to improve outcomes for students in the chemistry and transportation departments using laboratory activities. Keyword: Chemistry, Transportation, Sensor, Active Learning, ADALM Board, and Experiment Centric Pedagogy
more »
« less
- Award ID(s):
- 1915614
- PAR ID:
- 10287103
- Date Published:
- Journal Name:
- 2020 Fall ASEE Mid-Atlantic Section Meeting
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The COVID-19 pandemic forced many colleges and universities to remain on a completely online or remote educational learning for more than a year; however, due to distraction, lack of motivation or engagement, and other internal/external pandemic contributing factors, learners could not pay attention 100% to the learning process. Additionally, given that transportation classes are very hands-on, students could not do the experiment from home due to limited resources available, thereby hampering all three phases of learner interactions. The limitation of the implementation of physical, hands-on laboratory exercises during the pandemic further exacerbated students’ actualization of the critical Accreditation Board for Engineering and Technology (ABET) outcomes in transportation: An ability to develop and conduct experiments or test hypotheses, analyze and interpret data and use scientific judgment to draw conclusions. Subsequently, this paper highlights the development and implementation of experiment centric pedagogy (ECP) home-based active learning experiments in three transportation courses: Introduction to Transportation Systems, Traffic Engineering, and Highway Engineering during the pandemic. Quantitative and qualitative student success key constructs data was collected in conjunction with the execution of classroom observation protocols that measure active learning in these transportation courses. The results reveal a significant difference between the pre, and post- tests of key constructs associated with student success, such as motivation, critical thinking, curiosity, collaboration, and metacognition. The results of the Classroom Observation Protocol for Undergraduate STEM (COPUS) show more active student engagement when ECP is implemented.more » « less
-
Real-life hands-on pedagogy adequately grounded in workable social learning theory is a precursor to motivating students to grasp transportation-related concepts. At a historically black university, an evidence-based, experiment-focused, hands-on method of instruction was adopted in the transportation discipline from the fall of 2020 until now. This paper outlines the development and implementation of hands-on pedagogy in the transportation systems discipline from fall 2020 to fall 2022. The Motivated Strategies for Learning Questionnaire (MSLQ) developed by Pintrich, Smith, García, and McKeachie in 1991 was used to measure key constructs associated with students' success, such as motivation, epistemic and perceptual curiosity, and self-efficacy. Signature assignments were developed to measure student success outcomes from adopting the pedagogy. The results of the MSLQ administered to 44 students impacted by the pedagogy reveal a significant increase in the students' key constructs associated with success. The pedagogy reveals better knowledge gain and classroom engagement than the traditional teaching approach.more » « less
-
General chemistry laboratories are a core requirement for nearly all STEM (Science, Technology, Engineering, and Mathematics) majors and have the greatest breadth in disciplines and audience of any STEM course at a university. A bioremediation Course-based Undergraduate Research Experience (CURE) for first-year undergraduate students was developed to capture and engage student interest for this diverse group. In this multiweek laboratory exercise, students joined an NSF-funded research project designed to enhance the bioremediation of chlorinated aliphatic hydrocarbons. Students explored various biocompatible polymer blends and cross-linkers for encapsulation to create protection for bioremediation microbes. In this “guided research” model, students constructed the measurement apparatus, made hydrogel blends, and then monitored the diffusion of acid via pH measurements using a custom instrument. Herein, we describe how CURE elements were implemented within the bioremediation research experience culminating in student teams presenting posters at our university’s undergraduate research symposium. An open-laboratory format facilitated an active research group experience and recitation “group meeting” provided flexibility and needed time for reflection and discussion. Student survey data and course evaluations indicated that students saw value in this genuine research experience and enjoyed the freedom and time to practice and hone skills as both a scientist and teammate in a laboratory setting.more » « less
-
According to National Science Foundation data, African American students comprise 2% of the B.S. degree recipients in the geosciences, 2.6% in physics and 3.9% in engineering, while Blacks comprise 14.9% of the college-aged population. There is therefore an urgent need for Historical Black Colleges and Universities, which produce a large number of African American STEM graduates, to increase their focus on broadening STEM participation among underrepresented black students. Thus, there are untapped opportunities to develop intervention strategies and programs to increase recruitment, retention, and success of minorities in STEM and the workforce. The Experiment Centric Pedagogy (ECP) has been successful in promoting motivation and enhancing academic achievement of African American electrical engineering students. ECP uses a portable electronic instrumentation system, paired with appropriate software and sensors, to measure a wide range of properties, such as vibration and oxygen levels. This work in progress describes the initial adaptation of an evidence-based, experiment-focused teaching approach in biology, chemistry, civil engineering, industrial engineering, transportation systems, and physics. ECP will be utilized in these disciplines in various settings, such as in traditional classrooms, teaching laboratories, and at home use by students. Instructors use ECP for in-class demonstrations, for cooperative group experiments, and for homework assignments. The paper will highlight the criteria used for selection of initial experiments to adapt, the modifications made, and resulting changes in the course delivery. Preliminary results will be provided using measures of key constructs associated with student success, such as motivation, epistemic and perceptual curiosity, engineering identity, and self-efficacy. This project is conducted at a minority serving institution and most participants are from groups historically underrepresented in STEM.more » « less
An official website of the United States government

