skip to main content


Title: Chemistry and Transportation Engineering Experiment-Centric Pedagogy with Hands-on Labs
Abstract This project developed small, portable sensor-based experiments as an alternative to those conducted in a traditional laboratory setting. Experiment-centric pedagogy was used in this study and hands-on laboratory experiments were developed using USB-based measurement devices (ADALM 1000) and ADALM2000). Three experiments were developed for Chemistry namely pH meter, thermochemistry, and spectrophotometry. During pH settlement, the voltage was recorded, and the calibration curve drawn using standard buffers 4, 7, and 10. Furthermore, thermochemistry results were performed and validated using a digital thermometer. R2 curves have been found to yield good results for both experiments. Department of Transportation worked on four experiments which include vehicle counter, accelerometer, decibel meter, and a soil moisture meter. Data was recorded from each setup. Since the sensors provided results as voltages, a transfer function equation was used to convert the reading to the required unit of expression to validate the results from the USB device. These experiments were developed by pairing a graduate student in electrical engineering with a student in another discipline during a 10-week summer workshop. Student trainees underwent different training sessions that comprise of developing and testing instruments for measurement, attending the ASEE virtual conference, and research workshops. Students also read and summarized articles on the use of experimental pedagogy to motivate students. This study is designed to improve outcomes for students in the chemistry and transportation departments using laboratory activities. Keyword: Chemistry, Transportation, Sensor, Active Learning, ADALM Board, and Experiment Centric Pedagogy  more » « less
Award ID(s):
1915614
NSF-PAR ID:
10287103
Author(s) / Creator(s):
Date Published:
Journal Name:
2020 Fall ASEE Mid-Atlantic Section Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The COVID-19 pandemic forced many colleges and universities to remain on a completely online or remote educational learning for more than a year; however, due to distraction, lack of motivation or engagement, and other internal/external pandemic contributing factors, learners could not pay attention 100% to the learning process. Additionally, given that transportation classes are very hands-on, students could not do the experiment from home due to limited resources available, thereby hampering all three phases of learner interactions. The limitation of the implementation of physical, hands-on laboratory exercises during the pandemic further exacerbated students’ actualization of the critical Accreditation Board for Engineering and Technology (ABET) outcomes in transportation: An ability to develop and conduct experiments or test hypotheses, analyze and interpret data and use scientific judgment to draw conclusions. Subsequently, this paper highlights the development and implementation of experiment centric pedagogy (ECP) home-based active learning experiments in three transportation courses: Introduction to Transportation Systems, Traffic Engineering, and Highway Engineering during the pandemic. Quantitative and qualitative student success key constructs data was collected in conjunction with the execution of classroom observation protocols that measure active learning in these transportation courses. The results reveal a significant difference between the pre, and post- tests of key constructs associated with student success, such as motivation, critical thinking, curiosity, collaboration, and metacognition. The results of the Classroom Observation Protocol for Undergraduate STEM (COPUS) show more active student engagement when ECP is implemented. 
    more » « less
  2. According to National Science Foundation data, African American students comprise 2% of the B.S. degree recipients in the geosciences, 2.6% in physics and 3.9% in engineering, while Blacks comprise 14.9% of the college-aged population. There is therefore an urgent need for Historical Black Colleges and Universities, which produce a large number of African American STEM graduates, to increase their focus on broadening STEM participation among underrepresented black students. Thus, there are untapped opportunities to develop intervention strategies and programs to increase recruitment, retention, and success of minorities in STEM and the workforce. The Experiment Centric Pedagogy (ECP) has been successful in promoting motivation and enhancing academic achievement of African American electrical engineering students. ECP uses a portable electronic instrumentation system, paired with appropriate software and sensors, to measure a wide range of properties, such as vibration and oxygen levels. This work in progress describes the initial adaptation of an evidence-based, experiment-focused teaching approach in biology, chemistry, civil engineering, industrial engineering, transportation systems, and physics. ECP will be utilized in these disciplines in various settings, such as in traditional classrooms, teaching laboratories, and at home use by students. Instructors use ECP for in-class demonstrations, for cooperative group experiments, and for homework assignments. The paper will highlight the criteria used for selection of initial experiments to adapt, the modifications made, and resulting changes in the course delivery. Preliminary results will be provided using measures of key constructs associated with student success, such as motivation, epistemic and perceptual curiosity, engineering identity, and self-efficacy. This project is conducted at a minority serving institution and most participants are from groups historically underrepresented in STEM. 
    more » « less
  3. The hands-on approach in teaching and learning is an important resource to be explored because it offers a meaningful platform for student-instructor interaction that fosters sound scientific reasoning and improves the understanding of abstract chemistry concepts. Experiment-centric pedagogy (ECP) is a contemporary teaching approach that integrates active student participation in problem-based activities through hands-on mobile devices. This paper describes how experiment-centric pedagogy (ECP) has been used to teach key chemistry concepts to undergraduate students in the chemistry discipline at Historically Black University (HBCU). To assess whether ECP achieves a lasting increase in undergraduate student curiosity and engagement in the chemistry discipline, ECP was implemented from Fall 2021 to Fall 2022 using an inexpensive, safe, and portable electronic instrumentation system usable in both classrooms and laboratories. The Motivated Strategies for Learning Questionnaire developed by Pintrich, Smith, García, and McKeachie in 1991 was used to measure the key constructs associated with students’ curiosity and engagement. The classroom observation protocol (COPUS) was used to assess instructors’ effectiveness, and signature assignments were used to evaluate knowledge gains. 
    more » « less
  4. null (Ed.)
    The development of tools that promote active learning in engineering disciplines is critical. It is widely understood that students engaged in active learning environments outperform those taught using passive methods. Previously, we reported on the development and implementation of hands-on Low-Cost Desktop Learning Modules (LCDLMs) that replicate real-world industrial equipment which serves to create active learning environments. Thus far, miniaturized venturi meter, hydraulic loss, and double-pipe and shell & tube heat exchanger DLMs have been utilized by hundreds of students across the country. It was demonstrated that the use of DLMs in face-to-face classrooms results in statistically significant improvements in student performance as well as increases in student motivation compared to students taught in a traditional lecture-only style classroom. Last year, participants in the project conducted 45 implementations including over 600 DLMs at 24 universities across the country reaching more than 1,000 students. In this project, we report on the significant progress made in broad dissemination of DLMs and accompanying pedagogy. We demonstrate that DLMs serve to increase student learning gains not only in face-toface environments but also in virtual learning environments. Instructional videos were developed to aid in DLM-based learning during the COVID-19 pandemic when instructors were limited to virtual instruction. Preliminary results from this work show that students working with DLMs even in a virtual setting significantly outperform those taught without DLM-associated materials. Significant progress has also been made on the development of a new DLM cartridge: a see-through 3Dprinted miniature fluidized bed. The new 3D printing methodology will allow for rapid prototyping and streamlined development of DLMs. A 3D-printed evaporative cooling tower DLM will also be developed in the coming year. In October 2020, the team held a virtual implementers workshop to train new participating faculty in DLM use and implementation. In total, 13 new faculty participants from 10 universities attended the 6-hour, 2- day workshop and plan to implement DLMs in their classrooms during this academic year. In the last year, this project was disseminated in 8 presentations at the ASEE Virtual Conference (June 2020) and American Institute of Chemical Engineers Annual Conference (November 2019) as well as the AIChE virtual Community of Practice Labs Group and a seminar at a major university, ultimately disseminating DLM pedagogy to approximately 200 individuals including approximately 120 university faculty. Further, the former group postdoc has accepted an instructor faculty position at University of Wisconsin Madison where she will teach unit operations among other subjects; she and the remainder of the team believe the LCDLM project has prepared her well for that position. In the remaining 2.5 years of the project, we will continue to evaluate the effectiveness of DLMs in teaching key heat transfer and fluid dynamics concepts thru implementations in the rapidly expanding pool of participating universities. Further, we continue our ongoing efforts in creating the robust support structure necessary for large-scale adoption of hands-on educational tools for promotion of hands-on interactive student learning. 
    more » « less
  5. null (Ed.)
    The development of tools that promote active learning in engineering disciplines is critical. It is widely understood that students engaged in active learning environments outperform those taught using passive methods. Previously, we reported on the development and implementation of hands-on Low-Cost Desktop Learning Modules (LCDLMs) that replicate real-world industrial equipment which serves to create active learning environments. Thus far, miniaturized venturi meter, hydraulic loss, and double-pipe and shell & tube heat exchanger DLMs have been utilized by hundreds of students across the country. It was demonstrated that the use of DLMs in face-to-face classrooms results in statistically significant improvements in student performance as well as increases in student motivation compared to students taught in a traditional lecture-only style classroom. Last year, participants in the project conducted 45 implementations including over 600 DLMs at 24 universities across the country reaching more than 1,000 students. In this project, we report on the significant progress made in broad dissemination of DLMs and accompanying pedagogy. We demonstrate that DLMs serve to increase student learning gains not only in face-to-face environments but also in virtual learning environments. Instructional videos were developed to aid in DLM-based learning during the COVID-19 pandemic when instructors were limited to virtual instruction. Preliminary results from this work show that students working with DLMs even in a virtual setting significantly outperform those taught without DLM-associated materials. Significant progress has also been made on the development of a new DLM cartridge: a see-through 3D-printed miniature fluidized bed. The new 3D printing methodology will allow for rapid prototyping and streamlined development of DLMs. A 3D-printed evaporative cooling tower DLM will also be developed in the coming year. In October 2020, the team held a virtual implementers workshop to train new participating faculty in DLM use and implementation. In total, 13 new faculty participants from 10 universities attended the 6-hour, 2-day workshop and plan to implement DLMs in their classrooms during this academic year. In the last year, this project was disseminated in 8 presentations at the American Society for Engineering Education (ASEE) Virtual Conference (June 2020) and American Institute of Chemical Engineers Annual Conference (November 2019) as well as the AIChE virtual Community of Practice Labs Group and a seminar at a major university, ultimately disseminating DLM pedagogy to approximately 200 individuals including approximately 120 university faculty. Further, the former group postdoc has accepted an instructor faculty position at University of Wisconsin Madison where she will teach unit operations among other subjects; she and the remainder of the team believe the LCDLM project has prepared her well for that position. In the remaining 2.5 years of the project, we will continue to evaluate the effectiveness of DLMs in teaching key heat transfer and fluid dynamics concepts thru implementations in the rapidly expanding pool of participating universities. Further, we continue our ongoing efforts in creating the robust support structure necessary for large-scale adoption of hands-on educational tools for promotion of hands-on interactive student learning. 
    more » « less