skip to main content


Title: Home-based Cantilever Beam Experiment for Civil Engineering Undergraduate Students
There is a growing concern in STEM fields during the ongoing pandemic about how students will be able to achieve one of the major learning outcomes; an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering/scientific judgement to draw conclusions. Experimental Centric Pedagogy (ECP) has been shown to promote motivation and achievement in electrical engineering among black students and students in general. This paper focuses on the development of a hands-on laboratory experiment for undergraduate students in the department of civil engineering using Mobile Hands-On Studio Technology to improve experiential learning. The home-based experiment focuses on the measurement of beam stresses resulting from weights applied to the free-end of the beam while being fixed at the other end. The beam is made up of an acrylic material and has dimensions of 1500 mm in length, 40 mm in width, and 3.175 mm in thickness. Data acquisition from strain gauges installed on the beams was made possible using ALICE Voltmeter which displays voltage readings upon beam displacement. The stress readings are then calibrated and transformed to strains based on hooke’s law relationship. Findings indicate good understanding of concepts, motivation and students learning experiences through teamwork and collaborative activities. and achievement of stated learning outcome.  more » « less
Award ID(s):
1915614
NSF-PAR ID:
10287104
Author(s) / Creator(s):
Date Published:
Journal Name:
2021 ASEE Virtual Annual Conference Content Access
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A cost-effective, secure, and portable electronic instrumentation equipment is used in Experiment Centric Pedagogy (ECP), formerly known as Mobile Hands-On Studio Technology and Pedagogy, as a teaching method for STEM subjects both inside and outside of the classroom. Since the Spring of 2020, ECP has been integrated into two Industrial Engineering (IE) courses: Thermodynamics and Materials Engineering. This has been done in various ways, including through student use at home and in-class demonstrations and teaching labs. During the most recent academic session (Fall 2021–Spring 2022), the effects of practical home-based experimentation and lab activities on students' attitudes, interests, and performance were examined for the Engineering Thermodynamics course. The outcomes of a survey known as the Motivated Strategies for Learning Questionnaires (MLSQ), which was given to 51 students, demonstrated better improvements in the student's motivation, epistemic, and perceptual curiosity, three crucial characteristics linked to their success. Along with the MLSQ, the Classroom Observation Protocol for Undergraduate Students (COPUS) assesses active learning in Industrial Engineering courses, and quantitative and qualitative data on the significant components of student achievement were gathered. Results obtained show that using ECP has improved students' awareness of material properties and increased their interest in learning about the thermodynamics concept of heat transfer in connection to various solid materials. 
    more » « less
  2. null (Ed.)
    The current COVID-19 pandemic has forced many colleges and universities to remain on a completely online or remote educational learning environment for the 2020 Spring and Fall semesters, however there is a growing concern in STEM fields about how students will be able to achieve one of the major ABET learning outcomes without conducting physical, hands on laboratory exercises as many STEM disciplines are switching to virtual laboratory; an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering/scientific judgment to draw conclusions. In addition to the limited achievement of the ABET outcomes, roughly half of the population of a historically black university communicated their anxieties during the pandemic to the University President via Change.org. The students’ main anxiety is portrayed in a statement culled from the petition as follows: “Most classes are very hands-on, and we are not able to do those from home because of the limited resources available at home”. This paper highlights the best practices for the implementation of home-based hands-on activities across multiple STEM fields. The paper further elaborates on the impact of remote and virtual labs on students’ attitude, interest, and performance in STEM over the home-based hands-on experimentation. Home-based hands-on laboratory activities were performed in biology, electrical engineering, industrial engineering, transportation system, and civil engineering. The results of a Motivated Strategies for Learning Questionnaires (MLSQ) survey that was administered to about 100 STEM students revealed better gains in key constructs associated with student success, such as motivation, critical thinking, and metacognition. 
    more » « less
  3. According to National Science Foundation data, African American students comprise 2% of the B.S. degree recipients in the geosciences, 2.6% in physics and 3.9% in engineering, while Blacks comprise 14.9% of the college-aged population. There is therefore an urgent need for Historical Black Colleges and Universities, which produce a large number of African American STEM graduates, to increase their focus on broadening STEM participation among underrepresented black students. Thus, there are untapped opportunities to develop intervention strategies and programs to increase recruitment, retention, and success of minorities in STEM and the workforce. The Experiment Centric Pedagogy (ECP) has been successful in promoting motivation and enhancing academic achievement of African American electrical engineering students. ECP uses a portable electronic instrumentation system, paired with appropriate software and sensors, to measure a wide range of properties, such as vibration and oxygen levels. This work in progress describes the initial adaptation of an evidence-based, experiment-focused teaching approach in biology, chemistry, civil engineering, industrial engineering, transportation systems, and physics. ECP will be utilized in these disciplines in various settings, such as in traditional classrooms, teaching laboratories, and at home use by students. Instructors use ECP for in-class demonstrations, for cooperative group experiments, and for homework assignments. The paper will highlight the criteria used for selection of initial experiments to adapt, the modifications made, and resulting changes in the course delivery. Preliminary results will be provided using measures of key constructs associated with student success, such as motivation, epistemic and perceptual curiosity, engineering identity, and self-efficacy. This project is conducted at a minority serving institution and most participants are from groups historically underrepresented in STEM. 
    more » « less
  4. This Work-in-Progress paper investigates how students participating in a chemical engineering (ChE) Research Experience for Undergraduates (REU) program conceptualize and make plans for research projects. The National Science Foundation has invested substantial financial resources in REU programs, which allow undergraduate students the opportunity to work with faculty in their labs and to conduct hands-on experiments. Prior research has shown that REU programs have an impact on students’ perceptions of their research skills, often measured through the Undergraduate Research Student Self-Assessment (URSSA) survey. However, few evaluation and research studies have gone beyond perception data to include direct measures of students’ gains from program participation. This work-in-progress describes efforts to evaluate the impact of an REU on students’ conceptualization and planning of research studies using a pre-post semi-structured interview process. The construct being investigated for this study is planning, which has been espoused as a critical step in the self-regulated learning (SRL) process (Winne & Perry, 2000; Zimmerman, 2008). Students who effectively self-regulate demonstrate higher levels of achievement and comprehension (Dignath & Büttner, 2008), and (arguably) work efficiency. Planning is also a critical step in large projects, such as research (Dvir & Lechler, 2004). Those who effectively plan their projects make consistent progress and are more likely to achieve project success (Dvir, Raz, & Shenhar, 2003). Prior REU research has been important in demonstrating some positive impacts of REU programs, but it is time to dig deeper into the potential benefits to REU participation. Many REU students are included in weekly lab meetings, and thus potentially take part in the planning process for research projects. Thus, the research question explored here is: How do REU participants conceptualize and make plans for research projects? The study was conducted in the ChE REU program at a large, mid-Atlantic research-oriented university during the summer of 2018. Sixteen students in the program participated in the study, which entailed them completing a planning task followed by a semi-structured interview at the start and the end of the REU program. During each session, participants read a case statement that asked them to outline a plan in writing for a research project from beginning to end. Using semi-structured interview procedures, their written outlines were then verbally described. The verbalizations were recorded and transcribed. Two members of the research team are currently analyzing the responses using an open coding process to gain familiarity with the transcripts. The data will be recoded based on the initial open coding and in line with a self-regulatory and project-management framework. Results: Coding is underway, preliminary results will be ready by the draft submission deadline. The methods employed in this study might prove fruitful in understanding the direct impact on students’ knowledge, rather than relying on their perceptions of gains. Future research could investigate differences in students’ research plans based on prior research experience, research intensity of students’ home institutions, and how their plans may be impacted by training. 
    more » « less
  5. Evidence has shown that facilitating student-centered learning (SCL) in STEM classrooms enhances student learning and satisfaction [1]–[3]. However, despite increased support from educational and government bodies to incorporate SCL practices [1], minimal changes have been made in undergraduate STEM curriculum [4]. Faculty often teach as they were taught, relying heavily on traditional lecture-based teaching to disseminate knowledge [4]. Though some faculty express the desire to improve their teaching strategies, they feel limited by a lack of time, training, and incentives [4], [5]. To maximize student learning while minimizing instructor effort to change content, courses can be designed to incorporate simpler, less time-consuming SCL strategies that still have a positive impact on student experience. In this paper, we present one example of utilizing a variety of simple SCL strategies throughout the design and implementation of a 4-week long module. This module focused on introductory tissue engineering concepts and was designed to help students learn foundational knowledge within the field as well as develop critical technical skills. Further, the module sought to develop important professional skills such as problem-solving, teamwork, and communication. During module design and implementation, evidence-based SCL teaching strategies were applied to ensure students developed important knowledge and skills within the short timeframe. Lectures featured discussion-based active learning exercises to encourage student engagement and peer collaboration [6]–[8]. The module was designed using a situated perspective, acknowledging that knowing is inseparable from doing [9], and therefore each week, the material taught in the two lecture sessions was directly applied to that week’s lab to reinforce students’ conceptual knowledge through hands-on activities and experimental outcomes. Additionally, the majority of assignments served as formative assessments to motivate student performance while providing instructors with feedback to identify misconceptions and make real-time module improvements [10]–[12]. Students anonymously responded to pre- and post-module surveys, which focused on topics such as student motivation for enrolling in the module, module expectations, and prior experience. Students were also surveyed for student satisfaction, learning gains, and graduate student teaching team (GSTT) performance. Data suggests a high level of student satisfaction, as most students’ expectations were met, and often exceeded. Students reported developing a deeper understanding of the field of tissue engineering and learning many of the targeted basic lab skills. In addition to hands-on skills, students gained confidence to participate in research and an appreciation for interacting with and learning from peers. Finally, responses with respect to GSTT performance indicated a perceived emphasis on a learner-centered and knowledge/community-centered approaches over assessment-centeredness [13]. Overall, student feedback indicated that SCL teaching strategies can enhance student learning outcomes and experience, even over the short timeframe of this module. Student recommendations for module improvement focused primarily on modifying the lecture content and laboratory component of the module, and not on changing the teaching strategies employed. The success of this module exemplifies how instructors can implement similar strategies to increase student engagement and encourage in-depth discussions without drastically increasing instructor effort to re-format course content. Introduction. 
    more » « less