In an era increasingly affected by natural and human-caused disasters, the role of social media in disaster communication has become ever more critical. Despite substantial research on social media use during crises, a significant gap remains in detecting crisis-related misinformation. Detecting deviations in information is fundamental for identifying and curbing the spread of misinformation. This study introduces a novel Information Switching Pattern Model to identify dynamic shifts in perspectives among users who mention each other in crisisrelated narratives on social media. These shifts serve as evidence of crisis misinformation affecting user-mention network interactions. The study utilizes advanced natural language processing, network science, and census data to analyze geotagged tweets related to compound disaster events in Oklahoma in 2022. The impact of misinformation is revealed by distinct engagement patterns among various user types, such as bots, private organizations, non-profits, government agencies, and news media throughout different disaster stages. These patterns show how different disasters influence public sentiment, highlight the heightened vulnerability of mobile home communities, and underscore the importance of education and transportation access in crisis response. Understanding these engagement patterns is crucial for detecting misinformation and leveraging social media as an effective tool for risk communication during disasters
more »
« less
Can Predominant Credible Information Suppress Misinformation in Crises? Empirical Studies of Tweets Related to Prevention Measures during COVID-19
During COVID-19, misinformation on social media affects the adoption of appropriate prevention behaviors. It is urgent to suppress the misinformation to prevent negative public health consequences. Although an array of studies has proposed misinformation suppression strategies, few have investigated the role of predominant credible information during crises. None has examined its effect quantitatively using longitudinal social media data. Therefore, this research investigates the temporal correlations between credible information and misinformation, and whether predominant credible information can suppress misinformation for two prevention measures (i.e. topics), i.e. wearing masks and social distancing using tweets collected from February 15 to June 30, 2020. We trained Support Vector Machine classifiers to retrieve relevant tweets and classify tweets containing credible information and misinformation for each topic. Based on cross-correlation analyses of credible and misinformation time series for both topics, we find that the previously predominant credible information can lead to the decrease of misinformation (i.e. suppression) with a time lag. The research findings provide empirical evidence for suppressing misinformation with credible information in complex online environments and suggest practical strategies for future information management during crises and emergencies.
more »
« less
- Award ID(s):
- 2028012
- PAR ID:
- 10287237
- Date Published:
- Journal Name:
- ArXivorg
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Social media has become a powerful and efficient platform for information diffusion. The increasing pervasiveness of social media use, however, has brought about the problems of fraudulent accounts that are intended to diffuse misinformation or malicious contents. Twitter recently released comprehensive archives of fraudulent tweets that are possibly connected to a propaganda effort of Internet Research Agency (IRA) on the 2016 U.S. presidential election. To understand information diffusion in fraudulent networks, we analyze structural properties of the IRA retweet network, and develop deep neural network models to detect fraudulent tweets. The structure analysis reveals key characteristics of the fraudulent network. The experiment results demonstrate the superior performance of the deep learning technique to a traditional classification method in detecting fraudulent tweets. The findings have potential implications for curbing online misinformation.more » « less
-
Abstract Social media has been increasingly utilized to spread breaking news and risk communications during disasters of all magnitudes. Unfortunately, due to the unmoderated nature of social media platforms such as Twitter, rumors and misinformation are able to propagate widely. Given this, a surfeit of research has studied false rumor diffusion on Twitter, especially during natural disasters. Within this domain, studies have also focused on the misinformation control efforts from government organizations and other major agencies. A prodigious gap in research exists in studying the monitoring of misinformation on social media platforms in times of disasters and other crisis events. Such studies would offer organizations and agencies new tools and ideologies to monitor misinformation on platforms such as Twitter, and make informed decisions on whether or not to use their resources in order to debunk. In this work, we fill the research gap by developing a machine learning framework to predict the veracity of tweets that are spread during crisis events. The tweets are tracked based on the veracity of their content as either true, false, or neutral. We conduct four separate studies, and the results suggest that our framework is capable of tracking multiple cases of misinformation simultaneously, with scores exceeding 87%. In the case of tracking a single case of misinformation, our framework reaches an score of 83%. We collect and drive the algorithms with 15,952 misinformation‐related tweets from the Boston Marathon bombing (2013), Manchester Arena bombing (2017), Hurricane Harvey (2017), Hurricane Irma (2017), and the Hawaii ballistic missile false alert (2018). This article provides novel insights on how to efficiently monitor misinformation that is spread during disasters.more » « less
-
When natural disasters occur, various organizations and agencies turn to social media to understand who needs help and how they have been affected. The purpose of this study is twofold: first, to evaluate whether hurricane-related tweets have some consistency over time, and second, whether Twitter-derived content is thematically similar to other private social media data. Through a unique method of using Twitter data gathered from six different hurricanes, alongside private data collected from qualitative interviews conducted in the immediate aftermath of Hurricane Harvey, we hypothesize that there is some level of stability across hurricane-related tweet content over time that could be used for better real-time processing of social media data during natural disasters. We use latent Dirichlet allocation (LDA) to derive topics, and, using Hellinger distance as a metric, find that there is a detectable connection among hurricane topics. By uncovering some persistent thematic areas and topics in disaster-related tweets, we hope these findings can help first responders and government agencies discover urgent content in tweets more quickly and reduce the amount of human intervention needed.more » « less
-
As the internet and social media continue to become increasingly used for sharing break- ing news and important updates, it is with great motivation to study the behaviors of online users during crisis events. One of the biggest issues with obtaining information online is the veracity of such content. Given this vulnerability, misinformation becomes a very danger- ous and real threat when spread online. This study investigates misinformation debunking efforts and fills the research gap on cross-platform information sharing when misinforma- tion is spread during disasters. The false rumor “immigration status is checked at shelters” spread in both Hurricane Harvey and Hurricane Irma in 2017 and was analyzed in this paper based on a collection of 12,900 tweets. By studying the rumor control efforts made by thousands of accounts, we found that Twitter users respond and interact the most with tweets from verified Twitter accounts, and especially government organizations. Results on sourcing analysis show that the majority of Twitter users who utilize URLs in their post- ings are employing the information in the URLs to help debunk the false rumor. The most frequently cited information comes from news agencies when analyzing both URLs and domains. This paper provides novel insights into rumor control efforts made through social media during natural disasters and also the information sourcing and sharing behaviors that users exhibit during the debunking of false rumors.more » « less
An official website of the United States government

