Firms’ public communication on social media during disasters can benefit both disaster response efficiency and the perception of the corporate image. Despite its importance, limited guidelines are available to inform firms’ disaster communication strategies. The current study examines firms’ communication on social media in various disasters and how it impacts public engagement. We employ a novel natural language processing (NLP) approach, Semantic Projection with Active Retrieval (SPAR), to analyze Facebook posts made by Russell 3000 firms between 2009 and 2022 concerning various disasters. We show that firm communication can be measured based on two dimensions derived from the Competing Values Framework (CVF): internal versus external and stable versus flexible. We find that social media messages that emphasize operational continuity (internal/stable-oriented) are more popular during biological disasters. By contrast, messages that stress innovations and adaptations to disasters (external/flexible-oriented) elicit more engagement in weather-related disasters. The study offers a framework to characterize and guide firms’ design of disaster communication on social media in different disaster contexts. Our SPAR method is also available to firms to analyze their social media data and uncover the underlying patterns in communication across different contexts.
more »
« less
Information Switching Patterns of Risk Communication in Social Media during Disasters
In an era increasingly affected by natural and human-caused disasters, the role of social media in disaster communication has become ever more critical. Despite substantial research on social media use during crises, a significant gap remains in detecting crisis-related misinformation. Detecting deviations in information is fundamental for identifying and curbing the spread of misinformation. This study introduces a novel Information Switching Pattern Model to identify dynamic shifts in perspectives among users who mention each other in crisisrelated narratives on social media. These shifts serve as evidence of crisis misinformation affecting user-mention network interactions. The study utilizes advanced natural language processing, network science, and census data to analyze geotagged tweets related to compound disaster events in Oklahoma in 2022. The impact of misinformation is revealed by distinct engagement patterns among various user types, such as bots, private organizations, non-profits, government agencies, and news media throughout different disaster stages. These patterns show how different disasters influence public sentiment, highlight the heightened vulnerability of mobile home communities, and underscore the importance of education and transportation access in crisis response. Understanding these engagement patterns is crucial for detecting misinformation and leveraging social media as an effective tool for risk communication during disasters
more »
« less
- Award ID(s):
- 2339100
- PAR ID:
- 10568077
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Big Data
- ISSN:
- 2372-2096
- Page Range / eLocation ID:
- 1 to 12
- Subject(s) / Keyword(s):
- social media misinformation risk communication disasters
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Widespread disasters can overload official agencies’ capacity to provide assistance, and often citizen-led groups emerge to assist with disaster response. As social media platforms have expanded, emergent rescue groups have many ways to harness network and mobile tools to coordinate actions and help fellow citizens. This study used semi-structured interviews and photo elicitation techniques to better understand how wide-scale rescues occurred during the 2017 Hurricane Harvey flooding in the Greater Houston, Texas USA area. We found that citizens used diverse apps and social media-related platforms during these rescues and that they played one of three roles: rescuer, dispatcher, or information compiler. The key social media coordination challenges these rescuers faced were incomplete feedback loops, unclear prioritization, and communication overload. This work-in-progress paper contributes to the field of crisis and disaster response research by sharing the nuances in how citizens use social media to respond to calls for help from flooding victims.more » « less
-
Online social networks allow different agencies and the public to interact and share the underlying risks and protective actions during major disasters. This study revealed such crisis communication patterns during Hurricane Laura compounded by the COVID-19 pandemic. Hurricane Laura was one of the strongest (Category 4) hurricanes on record to make landfall in Cameron, Louisiana, U.S. Using an application programming interface (API), this study utilizes large-scale social media data obtained from Twitter through the recently released academic track that provides complete and unbiased observations. The data captured publicly available tweets shared by active Twitter users from the vulnerable areas threatened by Hurricane Laura. Online social networks were based on Twitter’s user influence feature (i.e., mentions or tags) that allows notification of other users while posting a tweet. Using network science theories and advanced community detection algorithms, the study split these networks into 21 components of various size, the largest of which contained eight well-defined communities. Several natural language processing techniques (i.e., word clouds, bigrams, topic modeling) were applied to the tweets shared by the users in these communities to observe their risk-taking or risk-averse behavior during a major compounding crisis. Social media accounts of local news media, radio, universities, and popular sports pages were among those which heavily involved and closely interacted with local residents. In contrast, emergency management and planning units in the area engaged less with the public. The findings of this study provide novel insights into the design of efficient social media communication guidelines to respond better in future disasters.more » « less
-
This article seeks to go beyond traditional GIS methods used in creating maps for disaster response that commonly look at the disaster extent. Instead, a slightly different approach is taken using social media data collected from Twitter to explore how people communicate during disaster events, how online communities form and evolve, and how communication methods can improve. This study collected the Twitter data during the 2015 Nepal earthquake disaster and applied a spatiotemporal analysis to find any patterns that show shadows or gaps in communication channels in local communities’ communication. Linkages in social media can be used to understand how people communicate, how quickly they diffuse information, and how social networks form online during disasters. These can improve communication throughout disaster phases. This study offers a deeper understanding of the kinds of spatiotemporal patterns and spatial social networks that can be observed during disaster events. The need for better communication during disaster events is imperative for better disaster management, increasing community resilience, and saving lives.more » « less
-
Abstract Social media has been increasingly utilized to spread breaking news and risk communications during disasters of all magnitudes. Unfortunately, due to the unmoderated nature of social media platforms such as Twitter, rumors and misinformation are able to propagate widely. Given this, a surfeit of research has studied false rumor diffusion on Twitter, especially during natural disasters. Within this domain, studies have also focused on the misinformation control efforts from government organizations and other major agencies. A prodigious gap in research exists in studying the monitoring of misinformation on social media platforms in times of disasters and other crisis events. Such studies would offer organizations and agencies new tools and ideologies to monitor misinformation on platforms such as Twitter, and make informed decisions on whether or not to use their resources in order to debunk. In this work, we fill the research gap by developing a machine learning framework to predict the veracity of tweets that are spread during crisis events. The tweets are tracked based on the veracity of their content as either true, false, or neutral. We conduct four separate studies, and the results suggest that our framework is capable of tracking multiple cases of misinformation simultaneously, with scores exceeding 87%. In the case of tracking a single case of misinformation, our framework reaches an score of 83%. We collect and drive the algorithms with 15,952 misinformation‐related tweets from the Boston Marathon bombing (2013), Manchester Arena bombing (2017), Hurricane Harvey (2017), Hurricane Irma (2017), and the Hawaii ballistic missile false alert (2018). This article provides novel insights on how to efficiently monitor misinformation that is spread during disasters.more » « less
An official website of the United States government

