skip to main content

Title: Interfaces in rechargeable magnesium batteries
This minireview provides a concise overview on the development of electrolytes for rechargeable magnesium (Mg) batteries. It elucidates the intrinsic driving force of the evolution from Grignard-based electrolytes to electrolytes based on simple Mg salts. Additional discussion includes the key electrochemical processes at the interfaces in Mg electrolytes, with a focus on unaddressed issues and future research directions.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Nanoscale Horizons
Page Range / eLocation ID:
1467 to 1475
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The utilization of metallic anodes holds promise for unlocking high gravimetric and volumetric energy densities and is pivotal to the adoption of ‘beyond Li’ battery chemistries. Much of the promise of magnesium batteries stems from claims regarding their lower predilection for dendrite growth. Whilst considerable effort has been invested in the design of novel electrolytes and cathodes, detailed studies of Mg plating are scarce. Using galvanostatic electrodeposition of metallic Mg from Grignard reagents in symmetric Mg–Mg cells, we establish a phase map characterized by disparate morphologies spanning the range from fractal aggregates of 2D nanoplatelets to highly anisotropic dendrites with singular growth fronts and nanowires entangled in the form of mats. The effects of electrolyte concentration, applied current density, and coordinating ligands have been explored. The study demonstrates a complex range of electrodeposited morphologies including canonical dendrites with shear moduli conducive to penetration through typical polymeric separators. We further demonstrate a strategy for mitigating Mg dendrite formation based on the addition of molecular Lewis bases that promote nanowire growth through selective surface coordination. 
    more » « less
  2. 2LiX-GaF3(X = Cl, Br, I) electrolytes offer favorable features for solid-state batteries: mechanical pliability and high conductivities. However, understanding the origin of fast ion transport in 2LiX-GaF3has been challenging. The ionic conductivity order of 2LiCl-GaF3(3.20 mS/cm) > 2LiBr-GaF3(0.84 mS/cm) > 2LiI-GaF3(0.03 mS/cm) contradicts binary LiCl (10−12S/cm) < LiBr (10−10S/cm) < LiI (10−7S/cm). Using multinuclear7Li,71Ga,19F solid-state nuclear magnetic resonance and density functional theory simulations, we found that Ga(F,X)npolyanions boost Li+-ion transport by weakening Li+-Xinteractions via charge clustering. In 2LiBr-GaF3and 2LiI-GaF3, Ga-X coordination is reduced with decreased F participation, compared to 2LiCl-GaF3. These insights will inform electrolyte design based on charge clustering, applicable to various ion conductors. This strategy could prove effective for producing highly conductive multivalent cation conductors such as Ca2+and Mg2+, as charge clustering of carboxylates in proteins is found to decrease their binding to Ca2+and Mg2+.

    more » « less
  3. null (Ed.)
    Due to its high theoretical energy density and relative abundancy of active materials, the magnesium–sulfur battery has attracted research attention in recent years. A closely related system, the lithium-sulfur battery, can suffer from serious self-discharge behavior. Until now, the self-discharge of Mg–S has been rarely addressed. Herein, we demonstrate for a wide variety of Mg–S electrolytes and conditions that Mg–S batteries also suffer from serious self-discharge. For a common Mg–S electrolyte, we identify a multi-step self-discharge pathway. Covalent S 8 diffuses to the metal Mg anode and is converted to ionic Mg polysulfide in a non-faradaic reaction. Mg polysulfides in solution are found to be meta-stable, continuing to react and precipitate as solid magnesium polysulfide species during both storage and active use. Mg–S electrolytes from the early, middle, and state-of-the-art stages of the Mg–S literature are all found to enable the self-discharge. The self-discharge behavior is found to decrease first cycle discharge capacity by at least 32%, and in some cases up to 96%, indicating this is a phenomenon of the Mg–S chemistry that deserves focused attention. 
    more » « less
    more » « less
  5. Abstract

    A new concentrated ternary salt ether‐based electrolyte enables stable cycling of lithium metal battery (LMB) cells with high‐mass‐loading (13.8 mg cm−2, 2.5 mAh cm−2) NMC622 (LiNi0.6Co0.2Mn0.2O2) cathodes and 50 μm Li anodes. Termed “CETHER‐3,” this electrolyte is based on LiTFSI, LiDFOB, and LiBF4with 5 vol% fluorinated ethylene carbonate in 1,2‐dimethoxyethane. Commercial carbonate and state‐of‐the‐art binary salt ether electrolytes were also tested as baselines. With CETHER‐3, the electrochemical performance of the full‐cell battery is among the most favorably reported in terms of high‐voltage cycling stability. For example, LiNixMnyCo1–xyO2(NMC)‐Li metal cells retain 80% capacity at 430 cycles with a 4.4 V cut‐off and 83% capacity at 100 cycles with a 4.5 V cut‐off (charge at C/5, discharge at C/2). According to simulation by density functional theory and molecular dynamics, this favorable performance is an outcome of enhanced coordination between Li+and the solvent/salt molecules. Combining advanced microscopy (high‐resolution transmission electron microscopy, scanning electron microscopy) and surface science (X‐ray photoelectron spectroscopy, time‐of‐fight secondary ion mass spectroscopy, Fourier‐transform infrared spectroscopy, Raman spectroscopy), it is demonstrated that a thinner and more stable cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) are formed. The CEI is rich in lithium sulfide (Li2SO3), while the SEI is rich in Li3N and LiF. During cycling, the CEI/SEI suppresses both the deleterious transformation of the cathode R‐3m layered near‐surface structure into disordered rock salt and the growth of lithium metal dendrites.

    more » « less