skip to main content


Title: Kondo physics in antiferromagnetic Weyl semimetal Mn 3+x Sn 1−x films
Topology and strong electron correlations are crucial ingredients in emerging quantum materials, yet their intersection in experimental systems has been relatively limited to date. Strongly correlated Weyl semimetals, particularly when magnetism is incorporated, offer a unique and fertile platform to explore emergent phenomena in novel topological matter and topological spintronics. The antiferromagnetic Weyl semimetal Mn 3 Sn exhibits many exotic physical properties such as a large spontaneous Hall effect and has recently attracted intense interest. In this work, we report synthesis of epitaxial Mn 3+ x Sn 1− x films with greatly extended compositional range in comparison with that of bulk samples. As Sn atoms are replaced by magnetic Mn atoms, the Kondo effect, which is a celebrated example of strong correlations, emerges, develops coherence, and induces a hybridization energy gap. The magnetic doping and gap opening lead to rich extraordinary properties, as exemplified by the prominent DC Hall effects and resonance-enhanced terahertz Faraday rotation.  more » « less
Award ID(s):
1905783
NSF-PAR ID:
10287264
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
6
Issue:
35
ISSN:
2375-2548
Page Range / eLocation ID:
eabc1977
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The anomalous Hall effect (AHE), typically observed in ferromagnetic (FM) metals with broken time-reversal symmetry, depends on electronic and magnetic properties. In Co3Sn2-xInxS2, a giant AHE has been attributed to Berry curvature associated with the FM Weyl semimetal phase, yet recent studies report complicated magnetism. We use neutron scattering to determine the spin dynamics and structures as a function ofxand provide a microscopic understanding of the AHE and magnetism interplay. Spin gap and stiffness indicate a contribution from Weyl fermions consistent with the AHE. The magnetic structure evolves fromc-axis ferromagnetism at$$x = 0$$x=0to a canted antiferromagnetic (AFM) structure with reducedc-axis moment and in-plane AFM order at$$x = 0.12$$x=0.12and further reducedc-axis FM moment at$$x = 0.3$$x=0.3. Since noncollinear spins can induce non-zero Berry curvature in real space acting as a fictitious magnetic field, our results revealed another AHE contribution, establishing the impact of magnetism on transport.

     
    more » « less
  2. Abstract

    Co$$_{3}$$3Sn$$_{2}$$2S$$_{2}$$2is a ferromagnetic Weyl semimetal that has been the subject of intense scientific interest due to its large anomalous Hall effect. We show that the coupling of this material’s topological properties to its magnetic texture leads to a strongly exchange biased anomalous Hall effect. We argue that this is likely caused by the coexistence of ferromagnetism and geometric frustration intrinsic to the kagome network of magnetic ions, giving rise to spin-glass behavior and an exchange bias.

     
    more » « less
  3. Abstract

    Spin-orbit torques (SOT) enable efficient electrical control of the magnetic state of ferromagnets, ferrimagnets and antiferromagnets. However, the conventional SOT has severe limitation that only in-plane spins accumulate near the surface, whether interpreted as a spin Hall effect (SHE) or as an Edelstein effect. Such a SOT is not suitable for controlling perpendicular magnetization, which would be more beneficial for realizing low-power-consumption memory devices. Here we report the observation of a giant magnetic-field-like SOT in a topological antiferromagnet Mn3Sn, whose direction and size can be tuned by changing the order parameter direction of the antiferromagnet. To understand the magnetic SHE (MSHE)- and the conventional SHE-induced SOTs on an equal footing, we formulate them as interface spin-electric-field responses and analyzed using a macroscopic symmetry analysis and a complementary microscopic quantum kinetic theory. In this framework, the large out-of-plane spin accumulation due to the MSHE has an inter-band origin and is likely to be caused by the large momentum-dependent spin splitting in Mn3Sn. Our work demonstrates the unique potential of antiferromagnetic Weyl semimetals in overcoming the limitations of conventional SOTs and in realizing low-power spintronics devices with new functionalities.

     
    more » « less
  4. Abstract

    The intrinsic magnetic topological insulator, Mn(Bi1−xSbx)2Te4, has been identified as a Weyl semimetal with a single pair of Weyl nodes in its spin-aligned strong-field configuration. A direct consequence of the Weyl state is the layer dependent Chern number,$$C$$C. Previous reports in MnBi2Te4thin films have shown higher$$C$$Cstates either by increasing the film thickness or controlling the chemical potential. A clear picture of the higher Chern states is still lacking as data interpretation is further complicated by the emergence of surface-band Landau levels under magnetic fields. Here, we report a tunable layer-dependent$$C$$C = 1 state with Sb substitution by performing a detailed analysis of the quantization states in Mn(Bi1−xSbx)2Te4dual-gated devices—consistent with calculations of the bulk Weyl point separation in the doped thin films. The observed Hall quantization plateaus for our thicker Mn(Bi1−xSbx)2Te4films under strong magnetic fields can be interpreted by a theory of surface and bulk spin-polarised Landau level spectra in thin film magnetic topological insulators.

     
    more » « less
  5. Abstract

    This study presents a thorough analysis of the electronic structures of the TaPxAs1−xseries of compounds, which are of significant interest due to their potential as topological materials. Using a combination of first principles and Wannier‐based tight‐binding methods, this study investigates both the bulk and surface electronic structures of the compounds for varying compositions (x = 0, 0.25, 0.50, 0.75, 1), with a focus on their topological properties. By using chirality analysis, (111) surface electronic structure analysis, and surface Fermi arcs analysis, it is established that the TaPxAs1−xcompounds exhibit topologically nontrivial behavior, characterized as Weyl semimetals (WSMs). The effect of spin–orbit coupling (SOC) on the topological properties of the compounds is further studied. In the absence of SOC, the compounds exhibit linearly dispersive fourfold degenerate points in the first Brillouin zone (FBZ) resembling Dirac semimetals. However, the introduction of SOC induces a phase transition to WSM states, with the number and position of Weyl points (WPs) varying depending on the composition of the alloy. For example, TaP has 12 WPs in the FBZ. The findings provide novel insights into the electronic properties of TaPxAs1−xcompounds and their potential implications for the development of topological materials for various technological applications.

     
    more » « less