skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MSP-Face Corpus: A Natural Audiovisual Emotional Database
Expressive behaviors conveyed during daily interactions are difficult to determine, because they often consist of a blend of different emotions. The complexity in expressive human communication is an important challenge to build and evaluate automatic systems that can reliably predict emotions. Emotion recognition systems are often trained with limited databases, where the emotions are either elicited or recorded by actors. These approaches do not necessarily reflect real emotions, creating a mismatch when the same emotion recognition systems are applied to practical applications. Developing rich emotional databases that reflect the complexity in the externalization of emotion is an important step to build better models to recognize emotions. This study presents the MSP-Face database, a natural audiovisual database obtained from video-sharing websites, where multiple individuals discuss various topics expressing their opinions and experiences. The natural recordings convey a broad range of emotions that are difficult to obtain with other alternative data collection protocols. A feature of the corpus is the addition of two sets. The first set includes videos that have been annotated with emotional labels using a crowd-sourcing protocol (9,370 recordings – 24 hrs, 41 m). The second set includes similar videos without emotional labels (17,955 recordings – 45 hrs, 57 m), offering the perfect infrastructure to explore semi-supervised and unsupervised machine-learning algorithms on natural emotional videos. This study describes the process of collecting and annotating the corpus. It also provides baselines over this new database using unimodal (audio, video) and multimodal emotional recognition systems.  more » « less
Award ID(s):
1718944
PAR ID:
10287569
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM International Conference on Multimodal Interaction (ICMI 2020)
Page Range / eLocation ID:
397 to 405
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Human-computer interactions can be very effective, especially if computers can automatically recognize the emotional state of the user. A key barrier for effective speech emotion recognition systems is the lack of large corpora annotated with emotional labels that reflect the temporal complexity of expressive behaviors, especially during multiparty interactions. This pa- per introduces the MSP-Conversation corpus, which contains interactions annotated with time-continuous emotional traces for arousal (calm to active), valence (negative to positive), and dominance (weak to strong). Time-continuous annotations offer the flexibility to explore emotional displays at different temporal resolutions while leveraging contextual information. This is an ongoing effort, where the corpus currently contains more than 15 hours of speech annotated by at least five annotators. The data is sourced from the MSP-Podcast corpus, which contains speech data from online audio-sharing websites annotated with sentence-level emotional scores. This data collection scheme is an easy, affordable, and scalable approach to obtain natural data with diverse emotional content from multiple speakers. This study describes the key features of the corpus. It also compares the time-continuous evaluations from the MSP- Conversation corpus with the sentence-level annotations of the MSP-Podcast corpus for the speech segments that overlap between the two corpora. 
    more » « less
  2. null (Ed.)
    Emotion regulation can be characterized by different activities that attempt to alter an emotional response, whether behavioral, physiological or neurological. The two most widely adopted strategies, cognitive reappraisal and expressive suppression are explored in this study, specifically in the context of disgust. Study participants (N = 21) experienced disgust via video exposure, and were instructed to either regulate their emotions or express them freely. If regulating, they were required to either cognitively reappraise or suppress their emotional experiences while viewing the videos. Video recordings of the participants' faces were taken during the experiment and electrocardiogram (ECG), electromyography (EMG), and galvanic skin response (GSR) readings were also collected for further analysis. We compared the participants behavioral (facial musculature movements) and physiological (GSR and heart rate) responses as they aimed to alter their emotional responses and computationally determined that when responding to disgust stimuli, the signals recorded during suppression and free expression were very similar, whereas those recorded during cognitive reappraisal were significantly different. Thus, in the context of this study, from a signal analysis perspective, we conclude that emotion regulation via cognitive reappraisal significantly alters participants' physiological responses to disgust, unlike regulation via suppression. 
    more » « less
  3. Accessibility efforts for d/Deaf and hard of hearing (DHH) learners in video-based learning have mainly focused on captions and interpreters, with limited attention to learners' emotional awareness--an important yet challenging skill for effective learning. Current emotion technologies are designed to support learners' emotional awareness and social needs; however, little is known about whether and how DHH learners could benefit from these technologies. Our study explores how DHH learners perceive and use emotion data from two collection approaches, self-reported and automatic emotion recognition (AER), in video-based learning. By comparing the use of these technologies between DHH (N=20) and hearing learners (N=20), we identified key differences in their usage and perceptions: 1) DHH learners enhanced their emotional awareness by rewatching the video to self-report their emotions and called for alternative methods for self-reporting emotion, such as using sign language or expressive emoji designs; and 2) while the AER technology could be useful for detecting emotional patterns in learning experiences, DHH learners expressed more concerns about the accuracy and intrusiveness of the AER data. Our findings provide novel design implications for improving the inclusiveness of emotion technologies to support DHH learners, such as leveraging DHH peer learners' emotions to elicit reflections. 
    more » « less
  4. Detection of human emotions is an essential part of affect-aware human-computer interaction (HCI). In daily conversations, the preferred way of describing affects is by using categorical emotion labels (e.g., sad, anger, surprise). In categorical emotion classification, multiple descriptors (with different degrees of relevance) can be assigned to a sample. Perceptual evaluations have relied on primary and secondary emotions to capture the ambiguous nature of spontaneous recordings. Primary emotion is the most relevant category felt by the evaluator. Secondary emotions capture other emotional cues also conveyed in the stimulus. In most cases, the labels collected from the secondary emotions are discarded, since assigning a single class label to a sample is preferred from an application perspective. In this work, we take advantage of both types of annotations to improve the performance of emotion classification. We collect the labels from all the annotations available for a sample and generate primary and secondary emotion labels. A classifier is then trained using multitask learning with both primary and secondary emotions. We experimentally show that considering secondary emotion labels during the learning process leads to relative improvements of 7.9% in F1-score for an 8-class emotion classification task. 
    more » « less
  5. In recent news, organizations have been considering the use of facial and emotion recognition for applications involving youth such as tackling surveillance and security in schools. However, the majority of efforts on facial emotion recognition research have focused on adults. Children, particularly in their early years, have been shown to express emotions quite differently than adults. Thus, before such algorithms are deployed in environments that impact the wellbeing and circumstance of youth, a careful examination should be made on their accuracy with respect to appropriateness for this target demographic. In this work, we utilize several datasets that contain facial expressions of children linked to their emotional state to evaluate eight different commercial emotion classification systems. We compare the ground truth labels provided by the respective datasets to the labels given with the highest confidence by the classification systems and assess the results in terms of matching score (TPR), positive predictive value, and failure to compute rate. Overall results show that the emotion recognition systems displayed subpar performance on the datasets of children's expressions compared to prior work with adult datasets and initial human ratings. We then identify limitations associated with automated recognition of emotions in children and provide suggestions on directions with enhancing recognition accuracy through data diversification, dataset accountability, and algorithmic regulation. 
    more » « less