skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 2, 2026

Title: Inclusive Emotion Technologies: Addressing the Needs of d/Deaf and Hard of Hearing Learners in Video-Based Learning
Accessibility efforts for d/Deaf and hard of hearing (DHH) learners in video-based learning have mainly focused on captions and interpreters, with limited attention to learners' emotional awareness--an important yet challenging skill for effective learning. Current emotion technologies are designed to support learners' emotional awareness and social needs; however, little is known about whether and how DHH learners could benefit from these technologies. Our study explores how DHH learners perceive and use emotion data from two collection approaches, self-reported and automatic emotion recognition (AER), in video-based learning. By comparing the use of these technologies between DHH (N=20) and hearing learners (N=20), we identified key differences in their usage and perceptions: 1) DHH learners enhanced their emotional awareness by rewatching the video to self-report their emotions and called for alternative methods for self-reporting emotion, such as using sign language or expressive emoji designs; and 2) while the AER technology could be useful for detecting emotional patterns in learning experiences, DHH learners expressed more concerns about the accuracy and intrusiveness of the AER data. Our findings provide novel design implications for improving the inclusiveness of emotion technologies to support DHH learners, such as leveraging DHH peer learners' emotions to elicit reflections.  more » « less
Award ID(s):
2118824 2119589
PAR ID:
10635774
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Human-Computer Interaction
Volume:
9
Issue:
2
ISSN:
2573-0142
Page Range / eLocation ID:
1 to 27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Caption text conveys salient auditory information to deaf or hard-of-hearing (DHH) viewers. However, the emotional information within the speech is not captured. We developed three emotive captioning schemas that map the output of audio-based emotion detection models to expressive caption text that can convey underlying emotions. The three schemas used typographic changes to the text, color changes, or both. Next, we designed a Unity framework to implement these schemas and used it to generate stimuli videos. In an experimental evaluation with 28 DHH viewers, we compared DHH viewers’ ability to understand emotions and their subjective judgments across the three captioning schemas. We found no significant difference in participants’ ability to understand the emotion based on the captions or their subjective preference ratings. Open-ended feedback revealed factors contributing to individual differences in preferences among the participants and challenges with automatically generated emotive captions that motivate future work. 
    more » « less
  2. Affective captions employ visual typographic modulations to convey a speaker’s emotions, improving speech accessibility for Deaf and Hard-of-Hearing (dhh) individuals. However, the most effective visual modulations for expressing emotions remain uncertain. Bridging this gap, we ran three studies with 39 dhh participants, exploring the design space of affective captions, which include parameters like text color, boldness, size, and so on. Study 1 assessed preferences for nine of these styles, each conveying either valence or arousal separately. Study 2 combined Study 1’s top-performing styles and measured preferences for captions depicting both valence and arousal simultaneously. Participants outlined readability, minimal distraction, intuitiveness, and emotional clarity as key factors behind their choices. In Study 3, these factors and an emotion-recognition task were used to compare how Study 2’s winning styles performed versus a non-styled baseline. Based on our findings, we present the two best-performing styles as design recommendations for applications employing affective captions. 
    more » « less
  3. This study investigates innovative interaction designs for communication and collaborative learning between learners of mixed hearing and signing abilities, leveraging advancements in mixed reality technologies like Apple Vision Pro and generative AI for animated avatars. Adopting a participatory design approach, we engaged 15 d/Deaf and hard of hearing (DHH) students to brainstorm ideas for an AI avatar with interpreting ability (sign language to English and English to sign language) that would facilitate their face-to-face communication with hearing peers. Participants envisioned the AI avatars to address some issues with human interpreters, such as lack of availability, and provide affordable options to expensive personalized interpreting services. Our findings indicate a range of preferences for integrating the AI avatars with actual human figures of both DHH and hearing communication partners. The participants highlighted the importance of having control over customizing the AI avatar, such as AI-generated signs, voices, facial expressions, and their synchronization for enhanced emotional display in communication. Based on our findings, we propose a suite of design recommendations that balance respecting sign language norms with adherence to hearing social norms. Our study offers insights into improving the authenticity of generative AI in scenarios involving specific and sometimes unfamiliar social norms. 
    more » « less
  4. Learners' awareness of their own affective states (emotions) can improve their meta-cognition, which is a critical skill of being aware of and controlling one's cognitive, motivational, and affect, and adjusting their learning strategies and behaviors accordingly. To investigate the effect of peers' affects on learners' meta-cognition, we proposed two types of cues that aggregated peers' affects that were recognized via facial expression recognition:Locative cues (displaying the spikes of peers' emotions along a video timeline) andTemporal cues (showing the positivities of peers' emotions at different segments of a video). We conducted a between-subject experiment with 42 college students through the use of think-aloud protocols, interviews, and surveys. Our results showed that the two types of cues improved participants' meta-cognition differently. For example, interacting with theTemporal cues triggered the participants to compare their own affective responses with their peers and reflect more on why and how they had different emotions with the same video content. While the participants perceived the benefits of using AI-generated peers' cues to improve their awareness of their own learning affects, they also sought more explanations from their peers to understand the AI-generated results. Our findings not only provide novel design implications for promoting learners' meta-cognition with privacy-preserved social cues of peers' learning affects, but also suggest an expanded design framework for Explainable AI (XAI). 
    more » « less
  5. Without a commonly accepted writing system for American Sign Language (ASL), Deaf or Hard of Hearing (DHH) ASL signers who wish to express opinions or ask questions online must post a video of their signing, if they prefer not to use written English, a language in which they may feel less proficient. Since the face conveys essential linguistic meaning, the face cannot simply be removed from the video in order to preserve anonymity. Thus, DHH ASL signers cannot easily discuss sensitive, personal, or controversial topics in their primary language, limiting engagement in online debate or inquiries about health or legal issues. We explored several recent attempts to address this problem through development of “face swap” technologies to automatically disguise the face in videos while preserving essential facial expressions and natural human appearance. We presented several prototypes to DHH ASL signers (N=16) and examined their interests in and requirements for such technology. After viewing transformed videos of other signers and of themselves, participants evaluated the understandability, naturalness of appearance, and degree of anonymity protection of these technologies. Our study revealed users’ perception of key trade-offs among these three dimensions, factors that contribute to each, and their views on transformation options enabled by this technology, for use in various contexts. Our findings guide future designers of this technology and inform selection of applications and design features. 
    more » « less