Environmental transmission electron microscopy (E-TEM) enables direct observation of nanoscale chemical processes crucial for catalysis and materials design. However, the high-energy electron probe can dramatically alter reaction pathways through radiolysis, the dissociation of molecules under electron beam irradiation. While extensively studied in liquid-cell TEM, the impact of radiolysis in gas phase reactions remains unexplored. Here, we present a numerical model elucidating radiation chemistry in both gas and liquid E-TEM environments. Our findings reveal that while gas phase E-TEM generates radiolytic species with lower reactivity than liquid phase systems, these species can accumulate to reaction-altering concentrations, particularly at elevated pressures. We validate our model through two case studies: the radiation-promoted oxidation of aluminum nanocubes and disproportionation of carbon monoxide. In both cases, increasing the electron beam dose rate directly accelerates their reaction kinetics, as demonstrated by enhanced AlOx growth and carbon deposition. Based on these insights, we establish practical guidelines for controlling radiolysis in closed-cell nanoreactors. This work not only resolves a fundamental challenge in electron microscopy but also advances our ability to rationally design materials with subÅngstrom resolution. 
                        more » 
                        « less   
                    
                            
                            Chemical and physical transformations of carbon-based nanomaterials observed by liquid phase transmission electron microscopy
                        
                    
    
            This article addresses recent advances in liquid phase transmission electron microscopy (LPTEM) for studying nanoscale synthetic processes of carbon-based materials that are independent of the electron beam—those driven by nonradiolytic chemical or thermal reactions. In particular, we focus on chemical/physical formations and the assembly of nanostructures composed of organic monomers/polymers, peptides/DNA, and biominerals. The synthesis of carbon-based nanomaterials generally only occurs at specific conditions, which cannot be mimicked by aqueous solution radiolysis. Carbon-based structures themselves are also acutely sensitive to the damaging effects of the irradiating beam, which make studying their synthesis using LPTEM a unique challenge that is possible when beam effects can be quantified and mitigated. With new direct sensing, high frame-rate cameras, and advances in liquid cell holder designs, combined with a growing understanding of irradiation effects and proper experimental controls, microscopists have been able to make strides in observing traditionally problematic carbon-based materials under conditions where synthesis can be controlled, and imaged free from beam effects, or with beam effects quantified and accounted for. These materials systems and LPTEM experimental techniques are discussed, focusing on nonradiolytic chemical and physical transformations relevant to materials synthesis. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1905270
- PAR ID:
- 10287688
- Date Published:
- Journal Name:
- MRS Bulletin
- Volume:
- 45
- Issue:
- 9
- ISSN:
- 0883-7694
- Page Range / eLocation ID:
- 727 to 737
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            It is believed that the core formation processes sequestered a large majority of Earth’s carbon into its metallic core. Incorporation of carbon to liquid iron may significantly influence its properties under physicochemical conditions pertinent to the deep magma ocean and thus the chemical evolution of terrestrial planets and moons. Compared to available experimental data on the physical properties of crystalline iron alloys under pressure, there is a remarkable lack of data on the properties of liquid iron‐rich alloys, due to experimental challenges. Here we review experimental and computational results on the structure and properties of iron or iron‐nickel liquids alloyed with carbon upon compression. These laboratory data provide an important foundation on which the interpretation of ultrahigh pressure laboratory data and the verification of theoretical data will have to be based. The low‐pressure data can be used to validate results from theoretical calculations at the same conditions, and high‐pressure calculations can be used to estimate and predict liquid properties under core conditions. Availability of the liquid properties of Fe‐C liquids will provide essential data for stringent tests of carbon‐rich core composition models for the outer core.more » « less
- 
            Formation kinetics of metal nanoparticles are generally describedviamass transport and thermodynamics‐based models, such as diffusion‐limited growth and classical nucleation theory (CNT). However, metal monomers are commonly assumed as precursors, leaving the identity of molecular intermediates and their contribution to nanoparticle formation unclear. Herein, liquid phase transmission electron microscopy (LPTEM) and reaction kinetic modeling are utilized to establish the nucleation and growth mechanisms and discover molecular intermediates during silver nanoparticle formation. Quantitative LPTEM measurements show that their nucleation rate decreases while growth rate is nearly invariant with electron dose rate. Reaction kinetic simulations show that Ag4and Ag−follow a statistically similar dose rate dependence as the experimentally determined growth rate. We show that experimental growth rates are consistent with diffusion‐limited growthviathe attachment of these species to nanoparticles. The dose rate dependence of nucleation rate is inconsistent with CNT. A reaction‐limited nucleation mechanism is proposed and it is demonstrated that experimental nucleation kinetics are consistent with Ag42+aggregation rates at millisecond time scales. Reaction throughput analysis of the kinetic simulations uncovered formation and decay pathways mediating intermediate concentrations. We demonstrate the power of quantitative LPTEM combined with kinetic modeling for establishing nanoparticle formation mechanisms and principal intermediates.more » « less
- 
            While the physical properties of carbon nanotubes (CNTs) are often superior to conventional engineering materials, their widespread adoption into many applications is limited by scaling the properties of individual CNTs to macroscale CNT assemblies known as CNT forests. The self-assembly mechanics of CNT forests that determine their morphology and ensemble properties remain poorly understood. Few experimental techniques exist to characterize and observe the growth and self-assembly processes in situ. Here we introduce the use of in-situ scanning electron microscope (SEM) synthesis based on chemical vapor deposition (CVD) processing. In this preliminary report, we share best practices for in-situ SEM CVD processing and initial CNT forest synthesis results. Image analysis techniques are developed to identify and track the movement of catalyst nanoparticles during synthesis conditions. Finally, a perspective is provided in which in-situ SEM observations represent one component of a larger system in which numerical simulation, machine learning, and digital control of experiments reduces the role of humans and human error in the exploration of CNT forest process-structure-property relationships.more » « less
- 
            Abstract The motion of nanoparticles in complex environments can provide us with a detailed understanding of interactions occurring at the molecular level. Liquid phase transmission electron microscopy (LPTEM) enables us to probe and capture the dynamic motion of nanoparticles directly in their native liquid environment, offering real time insights into nanoscale motion and interaction. However, linking motion to interactions to decode the underlying mechanisms of motion and interpret interactive forces at play is challenging, particularly when closed-form Langevin-based equations are not available to model the motion. Herein, we present LEONARDO, a deep generative model that leverages a physics-informed loss function and an attention-based transformer architecture to learn the stochastic motion of nanoparticles in LPTEM. We demonstrate that LEONARDO successfully captures statistical properties suggestive of the heterogeneity and viscoelasticity of the liquid cell environment surrounding the nanoparticles.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    