skip to main content

Title: Domain Isolation in FPGA-Accelerated Cloud and Data Center Applications
Cloud and data center applications increasingly leverage FPGAs because of their performance/watt benefits and flexibility advantages over traditional processing cores such as CPUs and GPUs. As the rising demand for hardware acceleration gradually leads to FPGA multi-tenancy in the cloud, there are rising concerns about the security challenges posed by FPGA virtualization. Exposing space-shared FPGAs to multiple cloud tenants may compromise the confidentiality, integrity, and availability of FPGA-accelerated applications. In this work, we present a hardware/software architecture for domain isolation in FPGA-accelerated clouds and data centers with a focus on software-based attacks aiming at unauthorized access and information leakage. Our proposed architecture implements Mandatory Access Control security policies from software down to the hardware accelerators on FPGA. Our experiments demonstrate that the proposed architecture protects against such attacks with minimal area and communication overhead.
Authors:
; ;
Award ID(s):
2007320
Publication Date:
NSF-PAR ID:
10287874
Journal Name:
Proceedings of the 2021 on Great Lakes Symposium on VLSI. 2021
Page Range or eLocation-ID:
283 to 288
Sponsoring Org:
National Science Foundation
More Like this
  1. Cloud deployments now increasingly exploit Field-Programmable Gate Array (FPGA) accelerators as part of virtual instances. While cloud FPGAs are still essentially single-tenant, the growing demand for efficient hardware acceleration paves the way to FPGA multi-tenancy. It then becomes necessary to explore architectures, design flows, and resource management features that aim at exposing multi-tenant FPGAs to the cloud users. In this article, we discuss a hardware/software architecture that supports provisioning space-shared FPGAs in Kernel-based Virtual Machine (KVM) clouds. The proposed hardware/software architecture introduces an FPGA organization that improves hardware consolidation and support hardware elasticity with minimal data movement overhead. It also relies on VirtIO to decrease communication latency between hardware and software domains. Prototyping the proposed architecture with a Virtex UltraScale+ FPGA demonstrated near specification maximum frequency for on-chip data movement and high throughput in virtual instance access to hardware accelerators. We demonstrate similar performance compared to single-tenant deployment while increasing FPGA utilization, which is one of the goals of virtualization. Overall, our FPGA design achieved about 2× higher maximum frequency than the state of the art and a bandwidth reaching up to 28 Gbps on 32-bit data width.
  2. The availability of FPGAs in cloud data centers offers rapid, on-demand access to reconfigurable hardware compute resources that users can adapt to their own needs. However, the low-level access to the FPGA hardware and associated resources such as the PCIe bus, SSD drives, or DRAM modules also opens up threats of malicious attackers uploading designs that are able to infer information about other users or about the cloud infrastructure itself. In particular, this work presents a new, fast PCIe-contention-based channel that is able to transmit data between FPGA-accelerated virtual machines by modulating the PCIe bus usage. This channel further works with different operating systems, and achieves bandwidths reaching 20 kbps with 99% accuracy. This is the first cross-FPGA covert channel demonstrated on commercial clouds, and has a bandwidth which is over 2000 × larger than prior voltage- or temperature-based cross-board attacks. This paper further demonstrates that the PCIe receivers are able to not just receive covert transmissions, but can also perform fine-grained monitoring of the PCIe bus, including detecting when co-located VMs are initialized, even prior to their associated FPGAs being used. Moreover, the proposed mechanism can be used to infer the activities of other users, or even slow downmore »the programming of the co-located FPGAs as well as other data transfers between the host and the FPGA. Beyond leaking information across different virtual machines, the ability to monitor the PCIe bandwidth over hours or days can be used to estimate the data center utilization and map the behavior of the other users. The paper also introduces further novel threats in FPGA-accelerated instances, including contention due to network traffic, contention due to shared NVMe SSDs, as well as thermal monitoring to identify FPGA co-location using the DRAM modules attached to the FPGA boards. This is the first work to demonstrate that it is possible to break the separation of privilege in FPGA-accelerated cloud environments, and highlights that defenses for public clouds using FPGAs need to consider PCIe, SSD, and DRAM resources as part of the attack surface that should be protected.« less
  3. With the deployment of artificial intelligent (AI) algorithms in a large variety of applications, there creates an increasing need for high-performance computing capabilities. As a result, different hardware platforms have been utilized for acceleration purposes. Among these hardware-based accelerators, the field-programmable gate arrays (FPGAs) have gained a lot of attention due to their re-programmable characteristics, which provide customized control logic and computing operators. For example, FPGAs have recently been adopted for on-demand cloud services by the leading cloud providers like Amazon and Microsoft, providing acceleration for various compute-intensive tasks. While the co-residency of multiple tenants on a cloud FPGA chip increases the efficiency of resource utilization, it also creates unique attack surfaces that are under-explored. In this paper, we exploit the vulnerability associated with the shared power distribution network on cloud FPGAs. We present a stealthy power attack that can be remotely launched by a malicious tenant, shutting down the entire chip and resulting in denial-of-service for other co-located benign tenants. Specifically, we propose stealthy-shutdown: a well-timed power attack that can be implemented in two steps: (1) an attacker monitors the realtime FPGA power-consumption detected by ring-oscillator-based voltage sensors, and (2) when capturing high power-consuming moments, i.e., the power consumptionmore »by other tenants is above a certain threshold, she/he injects a well-timed power load to shut down the FPGA system. Note that in the proposed attack strategy, the power load injected by the attacker only accounts for a small portion of the overall power consumption; therefore, such attack strategy remains stealthy to the cloud FPGA operator. We successfully implement and validate the proposed attack on three FPGA evaluation kits with running real-world applications. The proposed attack results in a stealthy-shutdown, demonstrating severe security concerns of co-tenancy on cloud FPGAs. We also offer two countermeasures that can mitigate such power attacks.« less
  4. Cloud deployments now increasingly provision FPGA accelerators as part of virtual instances. While FPGAs are still essentially single-tenant, the growing demand for hardware acceleration will inevitably lead to the need for methods and architectures supporting FPGA multi-tenancy. In this paper, we propose an architecture supporting space-sharing of FPGA devices among multiple tenants in the cloud. The proposed architecture implements a network-on-chip (NoC) designed for fast data movement and low hardware footprint. Prototyping the proposed architecture on a Xilinx Virtex Ultrascale + demonstrated near specification maximum frequency for on-chip data movement and high throughput in virtual instance access to hardware accelerators. We demonstrate similar performance compared to single-tenant deployment while increasing FPGA utilization (we achieved 6× higher FPGA utilization with our case study), which is one of the major goals of virtualization. Overall, our NoC interconnect achieved about 2× higher maximum frequency than the state-of-the-art and a bandwidth of 25.6 Gbps
  5. In this article, we survey existing academic and commercial efforts to provide Field-Programmable Gate Array (FPGA) acceleration in datacenters and the cloud. The goal is a critical review of existing systems and a discussion of their evolution from single workstations with PCI-attached FPGAs in the early days of reconfigurable computing to the integration of FPGA farms in large-scale computing infrastructures. From the lessons learned, we discuss the future of FPGAs in datacenters and the cloud and assess the challenges likely to be encountered along the way. The article explores current architectures and discusses scalability and abstractions supported by operating systems, middleware, and virtualization. Hardware and software security becomes critical when infrastructure is shared among tenants with disparate backgrounds. We review the vulnerabilities of current systems and possible attack scenarios and discuss mitigation strategies, some of which impact FPGA architecture and technology. The viability of these architectures for popular applications is reviewed, with a particular focus on deep learning and scientific computing. This work draws from workshop discussions, panel sessions including the participation of experts in the reconfigurable computing field, and private discussions among these experts. These interactions have harmonized the terminology, taxonomy, and the important topics covered in this manuscript.