1 Abstract Mutualisms evolve over time when individuals belonging to different species derive fitness benefits through the exchange of resources and services. Although prevalent in natural and managed ecosystems, mutualisms can be destabilized by environmental fluctuations that alter the costs and benefits of maintaining the symbiosis. In the rhizobia-legume mutualism, bacteria provide reduced nitrogen to the host plant in exchange for photosynthates that support bacterial metabolism. However, this relationship can be disrupted by the addition of external nitrogen sources to the soil, such as fertilizers. While the molecular mechanisms underpinning the rhizobia-legume symbiosis are well-characterized, the genome-wide fitness effects of nitrogen enrichment on symbiotic rhizobia are less clear. Here, we inoculated a randomly barcoded transposon-site sequencing (RB-TnSeq) library of the bacteriumEnsifer(Sinorhizobium)melilotiinto soils containing a host plant, alfalfa (Medicago sativa), under conditions of low and high nitrogen availability. Although plant performance remained robust to fertilization, nitrogen enrichment altered gene fitness for specific traits and functions in the rhizobial partner. Genes involved in carbohydrate metabolism showed increased fitness irrespective of soil nutrient content, whereas fitness gains in quorum-sensing genes were only observed in high-nitrogen environments. We also documented reductions in the fitness of nucleotide metabolism and cell-growth genes, while genes from oxidative phosphorylation and various amino-acid biosynthesis pathways were detrimental to fitness under elevated soil nitrogen, underscoring the complex trade-offs in rhizobial responses to nutrient enrichment. Our experimental functional genomics approach identified gene functions and pathways across allE. melilotireplicons that may be associated with the disruption of an agronomically important mutualism. 2ImportanceUnderstanding the evolutionary dynamics of the rhizobia-legume mutualism is important for elucidating how plant-soil-microbe interactions operate in natural and managed ecosystems. Legumes constitute a significant portion of global food production and generate 25% of all terrestrially fixed nitrogen. The application of chemical fertilizers can disrupt the mutualism by altering the selective pressures experienced by symbiotic rhizobia, potentially affecting gene fitness throughout the microbial genome and leading to the evolution of less productive or cooperative mutualists. To investigate how exogenous nitrogen inputs influence gene fitness during the complex rhizobial lifecycle, we used a barcoded genome-wide mutagenesis screen to quantify gene-level fitness across the rhizobial genome during symbiosis and identify metabolic functions affected by nitrogen enrichment. Our findings provide genomic insight into potential eco-evolutionary mechanisms by which symbioses are maintained or degraded over time in response to changing environmental conditions.
more »
« less
Comparative genomics reveals high rates of horizontal transfer and strong purifying selection on rhizobial symbiosis genes
Horizontal transfer (HT) alters the repertoire of symbiosis genes in rhizobial genomes and may play an important role in the on-going evolution of the rhizobia–legume symbiosis. To gain insight into the extent of HT of symbiosis genes with different functional roles (nodulation, N-fixation, host benefit and rhizobial fitness), we conducted comparative genomic and selection analyses of the full-genome sequences from 27 rhizobial genomes. We find that symbiosis genes experience high rates of HT among rhizobial lineages but also bear signatures of purifying selection (low Ka : Ks). HT and purifying selection appear to be particularly strong in genes involved in initiating the symbiosis (e.g. nodulation) and in genome-wide association candidates for mediating benefits provided to the host. These patterns are consistent with rhizobia adapting to the host environment through the loss and gain of symbiosis genes, but not with host-imposed positive selection driving divergence of symbiosis genes through recurring bouts of positive selection.
more »
« less
- Award ID(s):
- 1856744
- PAR ID:
- 10287891
- Date Published:
- Journal Name:
- Proceedings
- Volume:
- 288
- Issue:
- 1942
- ISSN:
- 1471-2954
- Page Range / eLocation ID:
- 20201804
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Host range specificity is a prominent feature of the legume-rhizobial symbiosis.Sinorhizobium melilotiandSinorhizobium medicaeare two closely related species that engage in root nodule symbiosis with legume plants of theMedicagogenus, but certainMedicagospecies exhibit selectivity in their interactions with the two rhizobial species. We have identified aMedicagoreceptor–like kinase, which can discriminate between the two bacterial species, acting as a genetic barrier against infection by mostS. medicaestrains. Activation of this receptor-mediated nodulation restriction requires a bacterial gene that encodes a glycine-rich octapeptide repeat protein with distinct variants capable of distinguishingS. medicaefromS. meliloti. This study sheds light on the coevolution of host plants and rhizobia, shaping symbiotic selectivity in their respective ecological niches.more » « less
-
Stabb, Eric V. (Ed.)ABSTRACT Some soil bacteria, called rhizobia, can interact symbiotically with legumes, in which they form nodules on the plant roots, where they can reduce atmospheric dinitrogen to ammonia, a form of nitrogen that can be used by growing plants. Rhizobium-plant combinations can differ in how successful this symbiosis is: for example, Sinorhizobium meliloti Rm1021 forms a relatively ineffective symbiosis with Medicago truncatula Jemalong A17, but Sinorhizobium medicae WSM419 is able to support more vigorous plant growth. Using proteomic data from free-living and symbiotic S. medicae WSM419, we previously identified a subset of proteins that were not closely related to any S. meliloti Rm1021 proteins and speculated that adding one or more of these proteins to S. meliloti Rm1021 would increase its effectiveness on M. truncatula A17. Three genes, Smed_3503, Smed_5985, and Smed_6456, were cloned into S. meliloti Rm1021 downstream of the E. coli lacZ promoter. Strains with these genes increased nodulation and improved plant growth, individually and in combination with one another. Smed_3503, renamed iseA ( i ncreased s ymbiotic e ffectiveness), had the largest impact, increasing M. truncatula biomass by 61%. iseA homologs were present in all currently sequenced S. medicae strains but were infrequent in other Sinorhizobium isolates. Rhizobium leguminosarum bv. viciae 3841 containing iseA led to more nodules on pea and lentil. Split-root experiments with M. truncatula A17 indicated that S. meliloti Rm1021 carrying the S. medicae iseA is less sensitive to plant-induced resistance to rhizobial infection, suggesting an interaction with the plant’s regulation of nodule formation. IMPORTANCE Legume symbiosis with rhizobia is highly specific. Rhizobia that can nodulate and fix nitrogen on one legume species are often unable to associate with a different species. The interaction can be more subtle. Symbiotically enhanced growth of the host plant can differ substantially when nodules are formed by different rhizobial isolates of a species, much like disease severity can differ when conspecific isolates of pathogenic bacteria infect different cultivars. Much is known about bacterial genes essential for a productive symbiosis, but less is understood about genes that marginally improve performance. We used a proteomic strategy to identify Sinorhizobium genes that contribute to plant growth differences that are seen when two different strains nodulate M. truncatula A17. These genes could also alter the symbiosis between R. leguminosarum bv. viciae 3841 and pea or lentil, suggesting that this approach identifies new genes that may more generally contribute to symbiotic productivity.more » « less
-
null (Ed.)Legumes preferentially associate with and reward beneficial rhizobia in root nodules, but the processes by which rhizobia evolve to provide benefits to novel hosts remain poorly understood. Using cycles of in planta and in vitro evolution, we experimentally simulated lifestyles where rhizobia repeatedly interact with novel plant genotypes with which they initially provide negligible benefits. Using a full-factorial replicated design, we independently evolved two rhizobia strains in associations with each of two Lotus japonicus genotypes that vary in regulation of nodule formation. We evaluated phenotypic evolution of rhizobia by quantifying fitness, growth effects and histological features on hosts, and molecular evolution via genome resequencing. Rhizobia evolved enhanced host benefits and caused changes in nodule development in one of the four host–symbiont combinations, that appeared to be driven by reduced costs during symbiosis, rather than increased nitrogen fixation. Descendant populations included genetic changes that could alter rhizobial infection or proliferation in host tissues, but lack of evidence for fixation of these mutations weakens the results. Evolution of enhanced rhizobial benefits occurred only in a subset of experiments, suggesting a role for host–symbiont genotype interactions in mediating the evolution of enhanced benefits from symbionts.more » « less
-
Legumes are the second most important family of crop plants. One defining feature of legumes is their unique ability to establish a nitrogen-fixing root nodule symbiosis with soil bacteria known as rhizobia. Since domestication from their wild relatives, crop legumes have been under intensive breeding to improve yield and other agronomic traits but with little attention paid to the belowground symbiosis traits. Theoretical models predict that domestication and breeding processes, coupled with high‐input agricultural practices, might have reduced the capacity of crop legumes to achieve their full potential of nitrogen fixation symbiosis. Testing this prediction requires characterizing symbiosis traits in wild and breeding populations under both natural and cultivated environments using genetic, genomic, and ecological approaches. However, very few experimental studies have been dedicated to this area of research. Here, we review how legumes regulate their interactions with soil rhizobia and how domestication, breeding and agricultural practices might have affected nodulation capacity, nitrogen fixation efficiency, and the composition and function of rhizobial community. We also provide a perspective on how to improve legume-rhizobial symbiosis in sustainable agricultural systems.more » « less
An official website of the United States government

