Abstract We study the interior of black holes in the presence of charged scalar hair of small amplitude$$\epsilon $$ on the event horizon and show their terminal boundary is a crushing Kasner-like singularity. These spacetimes are spherically symmetric, spatially homogeneous and they differ significantly from the hairy black holes with uncharged matter previously studied in[M. Van de Moortel, Violent nonlinear collapse inside charged hairy black holes, Arch. Rational. Mech. Anal., 248, 89, 2024]in that the electric field is dynamical and subject to the backreaction of charged matter. We prove this charged backreaction causes drastically different dynamics compared to the uncharged case that ultimately impact the formation of the spacelike singularity, exhibiting novel phenomena such asCollapsed oscillations: oscillatory growth of the scalar hair, nonlinearly induced by the collapseAfluctuating collapse: The final Kasner exponents’ dependency in$$\epsilon $$ is via an expression of the form$$|\sin \left( \omega _0 \cdot \epsilon ^{-2}+ O(\log (\epsilon ^{-1}))\right) |$$ .AKasner bounce: a transition from an unstable Kasner metric to a different stable Kasner metricThe Kasner bounce occurring in our spacetime is reminiscent of the celebrated BKL scenario in cosmology. We additionally propose a construction indicating the relevance of the above phenomena – including Kasner bounces – to spacelike singularities inside more general (asymptotically flat) black holes, beyond the hairy case. While our result applies to all values of$$\Lambda \in \mathbb {R}$$ , in the$$\Lambda <0$$ case, our spacetime corresponds to the interior region of a charged asymptotically Anti-de-Sitter stationary black hole, also known as aholographic superconductorin high-energy physics, and whose exterior region was rigorously constructed in the recent mathematical work [W. Zheng,Asymptotically Anti-de Sitter Spherically Symmetric Hairy Black Holes, arXiv.2410.04758].
more »
« less
Imprints of phase transitions on Kasner singularities
Under the correspondence, asymptotically anti–de Sitter geometries with backreaction can be viewed as conformal field theory states subject to a renormalization group (RG) flow from an ultraviolet (UV) description toward an infrared (IR) sector. For black holes, however, the IR point is the horizon, so one way to interpret the interior is as an analytic continuation to a “trans-IR” imaginary-energy regime. In this paper, we demonstrate that this analytic continuation preserves some imprints of the UV physics, particularly near its “end point” at the classical singularity. We focus on holographic phase transitions of geometric objects in round black holes. We first assert the consistency of interpreting such black holes, including their interiors, as RG flows by constructing a monotonic function. We then explore how UV phase transitions of entanglement entropy and scalar two-point functions, each of which are encoded by bulk geometry under the holographic mapping, are related to the structure of the near-singularity geometry, which is quantified by Kasner exponents. Using 2D holographic flows triggered by relevant scalar deformations as test beds, we find that the 3D bulk’s near-singularity Kasner exponents can be viewed as functions of the UV physics precisely when the deformation is nonzero. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2210562
- PAR ID:
- 10525062
- Publisher / Repository:
- American Physical Society (APS)
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 109
- Issue:
- 12
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate various properties of extremal dyonic static black holes in Einstein-Maxwell-Dilaton-Axion theory. We obtain a simple first-order ordinary differential equation for the black hole mass in terms of its electric and magnetic charges, which we can solve explicitly for certain special values of the scalar couplings. For one such case we also construct new dyonic black hole solutions, making use of the presence of an enhanced symmetry. Finally, we investigate the structure of long range forces and binding energies between nonequivalent extremal black holes. For certain special cases, we can identify regions of parameter space where the force is always attractive or repulsive. Unlike in the case without an axion, the force and binding energies between distinct black holes are not always correlated with each other. Our work is motivated in part by the question of whether long range forces between nonidentical states can potentially encode information about UV constraints on low-energy physics. Published by the American Physical Society2025more » « less
-
Massive scalar fields are promising candidates for addressing many unresolved problems in fundamental physics. We report the first model-agnostic Bayesian search of massive scalar fields that are nonminimally coupled to gravity in LIGO/Virgo/KAGRA gravitational-wave data. We find no evidence for such fields and place the most stringent upper limits on their coupling for scalar masses . We exemplify the strength of these bounds by applying them to massive scalar-Gauss-Bonnet gravity, finding the tightest constraints on the coupling constant to date, for scalar masses to 90% credible level. Published by the American Physical Society2025more » « less
-
In a recent publication we studied the decay rate of primordial black holes perceiving the dark dimension, an innovative five-dimensional (5D) scenario that has a compact space with characteristic length scale in the micron range. We demonstrated that the rate of Hawking radiation of 5D black holes slows down compared to 4D black holes of the same mass. Armed with our findings we showed that for a species scale of , an all-dark-matter interpretation in terms of primordial black holes should be feasible for black hole masses in the range . As a natural outgrowth of our recent study, herein we calculate the Hawking evaporation of near-extremal 5D black holes. Using generic entropy arguments we demonstrate that Hawking evaporation of higher-dimensional near-extremal black holes proceeds at a slower rate than the corresponding Schwarzschild black holes of the same mass. Assisted by this result we show that if there were 5D primordial near-extremal black holes in nature, then a primordial black hole all-dark-matter interpretation would be possible in the mass range , where is a parameter that controls the difference between mass and charge of the associated near-extremal black hole. Published by the American Physical Society2024more » « less
-
Searches for pair-produced multijet signatures using data corresponding to an integrated luminosity of of proton-proton collisions at are presented. A data scouting technique is employed to record events with low jet scalar transverse momentum sum values. The electroweak production of particles predicted in -parity violating supersymmetric models is probed for the first time with fully hadronic final states. This is the first search for prompt hadronically decaying mass-degenerate higgsinos, and extends current exclusions on -parity violating top squarks and gluinos. © 2024 CERN, for the CMS Collaboration2024CERNmore » « less
An official website of the United States government

