Abstract Software bots have been facilitating several development activities in Open Source Software (OSS) projects, including code review. However, these bots may bring unexpected impacts to group dynamics, as frequently occurs with new technology adoption. Understanding and anticipating such effects is important for planning and management. To analyze these effects, we investigate how several activity indicators change after the adoption of a code review bot. We employed a regression discontinuity design on 1,194 software projects from GitHub. We also interviewed 12 practitioners, including open-source maintainers and contributors. Our results indicate that the adoption of code review bots increases the number of monthly merged pull requests, decreases monthly non-merged pull requests, and decreases communication among developers. From the developers’ perspective, these effects are explained by the transparency and confidence the bot comments introduce, in addition to the changes in the discussion focused on pull requests. Practitioners and maintainers may leverage our results to understand, or even predict, bot effects on their projects.
more »
« less
What to Expect from Code Review Bots on GitHub?: A Survey with OSS Maintainers
Software bots are used by Open Source Software (OSS) projects to streamline the code review process. Interfacing between developers and automated services, code review bots report continuous integration failures, code quality checks, and code coverage. However, the impact of such bots on maintenance tasks is still neglected. In this paper, we study how project maintainers experience code review bots. We surveyed 127 maintainers and asked about their expectations and perception of changes incurred by code review bots. Our findings reveal that the most frequent expectations include enhancing the feedback bots provide to developers, reducing the maintenance burden for developers, and enforcing code coverage. While maintainers report that bots satisfied their expectations, they also perceived unexpected effects, such as communication noise and newcomers' dropout. Based on these results, we provide a series of implications for bot developers, as well as insights for future research.
more »
« less
- Award ID(s):
- 1815503
- PAR ID:
- 10287966
- Date Published:
- Journal Name:
- 34th Brazilian Symposium on Software Engineering (SBES 2020)
- Page Range / eLocation ID:
- 457 to 462
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Software bots are used to streamline tasks in Open Source Software (OSS) projects' pull requests, saving development cost, time, and effort. However, their presence can be disruptive to the community. We identified several challenges caused by bots in pull request interactions by interviewing 21 practitioners, including project maintainers, contributors, and bot developers. In particular, our findings indicate noise as a recurrent and central problem. Noise affects both human communication and development workflow by overwhelming and distracting developers. Our main contribution is a theory of how human developers perceive annoying bot behaviors as noise on social coding platforms. This contribution may help practitioners understand the effects of adopting a bot, and researchers and tool designers may leverage our results to better support human-bot interaction on social coding platforms.more » « less
-
With the emergence of social coding platforms, collaboration has become a key and dynamic aspect to the success of software projects. In such platforms, developers have to collaborate and deal with issues of collaboration in open-source software development. Although collaboration is challenging, collaborative development produces better software systems than any developer could produce alone. Several approaches have investigated collaboration challenges, for instance, by proposing or evaluating models and tools to support collaborative work. Despite the undeniable importance of the existing efforts in this direction, there are few works on collaboration from perspectives of developers. In this work, we aim to investigate the perceptions of open-source software developers on collaborations, such as motivations, techniques, and tools to support global, productive, and collaborative development. Following an ad hoc literature review, an exploratory interview study with 12 open-source software developers from GitHub, our novel approach for this problem also relies on an extensive survey with 121 developers to confirm or refute the interview results. We found different collaborative contributions, such as managing change requests. Besides, we observed that most collaborators prefer to collaborate with the core team instead of their peers. We also found that most collaboration happens in software development (60%) and maintenance (47%) tasks. Furthermore, despite personal preferences to work independently, developers still consider collaborating with others in specific task categories, for instance, software development. Finally, developers also expressed the importance of the social coding platforms, such as GitHub, to support maintainers, and contributors in making decisions and developing tasks of the projects. Therefore, these findings may help project leaders optimize the collaborations among developers and reduce entry barriers. Moreover, these findings may support the project collaborators in understanding the collaboration process and engaging others in the project.more » « less
-
Background: Some developer activity traditionally performed manually, such as making code commits, opening, managing, or closing issues is increasingly subject to automation in many OSS projects. Specifically, such activity is often performed by tools that react to events or run at specific times. We refer to such automation tools as bots and, in many software mining scenarios related to developer productivity or code quality it is desirable to identify bots in order to separate their actions from actions of individuals. Aim: Find an automated way of identifying bots and code committed by these bots, and to characterize the types of bots based on their activity patterns. Method and Result: We propose BIMAN, a systematic approach to detect bots using author names, commit messages, files modified by the commit, and projects associated with the ommits. For our test data, the value for AUC-ROC was 0.9. We also characterized these bots based on the time patterns of their code commits and the types of files modified, and found that they primarily work with documentation files and web pages, and these files are most prevalent in HTML and JavaScript ecosystems. We have compiled a shareable dataset containing detailed information about 461 bots we found (all of whom have more than 1000 commits) and 13,762,430 commits they created.more » « less
-
Software documentation supports a broad set of software maintenance tasks; however, creating and maintaining high-quality, multi-level software documentation can be incredibly time-consuming and therefore many code bases suffer from a lack of adequate documentation. We address this problem through presenting HGEN, a fully automated pipeline that leverages LLMs to transform source code through a series of six stages into a well-organized hierarchy of formatted documents. We evaluate HGEN both quantitatively and qualitatively. First, we use it to generate documentation for three diverse projects, and engage key developers in comparing the quality of the generated documentation against their own previously produced manually-crafted documentation. We then pilot HGEN in nine different industrial projects using diverse datasets provided by each project. We collect feedback from project stakeholders, and analyze it using an inductive approach to identify recurring themes. Results show that HGEN produces artifact hierarchies similar in quality to manually constructed documentation, with much higher coverage of the core concepts than the baseline approach. Stakeholder feedback highlights HGEN's commercial impact potential as a tool for accelerating code comprehension and maintenance tasks.more » « less
An official website of the United States government

