skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quality Control in Crowdsourcing based on Fine-Grained Behavioral Features
Crowdsourcing is popular for large-scale data collection and labeling, but a major challenge is on detecting low-quality submissions. Recent studies have demonstrated that behavioral features of workers are highly correlated with data quality and can be useful in quality control. However, these studies primarily leveraged coarsely extracted behavioral features, and did not further explore quality control at the fine-grained level, i.e., the annotation unit level. In this paper, we investigate the feasibility and benefits of using fine-grained behavioral features, which are the behavioral features finely extracted from a worker's individual interactions with each single unit in a subtask, for quality control in crowdsourcing. We design and implement a framework named Fine-grained Behavior-based Quality Control (FBQC) that specifically extracts fine-grained behavioral features to provide three quality control mechanisms: (1) quality prediction for objective tasks, (2) suspicious behavior detection for subjective tasks, and (3) unsupervised worker categorization. Using the FBQC framework, we conduct two real-world crowdsourcing experiments and demonstrate that using fine-grained behavioral features is feasible and beneficial in all three quality control mechanisms. Our work provides clues and implications for helping job requesters or crowdsourcing platforms to further achieve better quality control.  more » « less
Award ID(s):
1936968
PAR ID:
10287980
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Human-Computer Interaction
Volume:
5
Issue:
CSCW
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Crowdsourcing has become a popular means to solicit assistance for scientific research. From classifying images or texts to responding to surveys, tapping into the knowledge of crowds to complete complex tasks has become a common strategy in social and information sciences. Although the timeliness and cost-effectiveness of crowdsourcing may provide desirable advantages to researchers, the data it generates may be of lower quality for some scientific purposes. The quality control mechanisms, if any, offered by common crowdsourcing platforms may not provide robust measures of data quality. This study explores whether research task participants may engage in motivated misreporting whereby participants tend to cut corners to reduce their workload while performing various scientific tasks online. We conducted an experiment with three common crowdsourcing tasks: answering surveys, coding images, and classifying online social media content. The experiment recruited workers from three sources: a crowdsourcing platform (Amazon Mechanical Turk) and a commercial online survey panel. The analysis seeks to address the following two questions: (1) whether online panelists or crowd workers may engage in motivated misreporting differently and (2) whether the patterns of misreporting vary by different task types. The study focuses on the analysis of the experiment in answering surveys and offers quality assurance practice guideline of using crowdsourcing for social science research. 
    more » « less
  2. Citizen science projects have successfully taken advantage of volunteers to unlock scientific information contained in images. Crowds extract scientific data by completing different types of activities: transcribing text, selecting values from pre-defined options, reading data aloud, or pointing and clicking at graphical elements. While designing crowdsourcing tasks, selecting the best form of input and task granularity is essential for keeping the volunteers engaged and maximizing the quality of the results. In the context of biocollections information extraction, this study compares three interface actions (transcribe, select, and crop) and tasks of different levels of granularity (single field vs. compound tasks). Using 30 crowdsourcing experiments and two different populations, these interface alternatives are evaluated in terms of speed, quality, perceived difficulty and enjoyability. The results show that Selection and Transcription tasks generate high quality output, but they are perceived as boring. Conversely, Cropping tasks, and arguably graphical tasks in general, are more enjoyable, but their output quality depend on additional machine-oriented processing. When the text to be extracted is longer than two or three words, Transcription is slower than Selection and Cropping. When using compound tasks, the overall time required for the crowdsourcing experiment is considerably shorter than using single field tasks, but they are perceived as more difficult. When using single field tasks, both the quality of the output and the amount of identified data are slightly higher compared to compound tasks, but they are perceived by the crowd as less entertaining. 
    more » « less
  3. Geo-obfuscation is a location privacy protection mechanism used by mobile users to conceal their precise locations when reporting location data, and it has been widely used to protect the location privacy of workers in spatial crowdsourcing (SC). However, this technique introduces inaccuracies in the reported locations, raising the question of how to control the quality loss that results from obfuscation in SC services. Prior studies have addressed this issue in time-insensitive SC settings, where some degree of quality degradation can be accepted and the locations can be expressed with less precision, which, however, is inadequate for time-sensitive SC. In this paper, we aim to minimize the quality loss caused by geo-obfuscation in time-sensitive SC applications. To this end, we model workers’ mobility on a fine-grained location field and constrain each worker’s obfuscation range to a set of peer locations, which have similar traveling costs to the destination as the actual location. We apply a linear programming (LP) framework to minimize the quality loss while satisfying both peer location constraints and geo-indistinguishability, a location privacy criterion extended from differential privacy. By leveraging the constraint features of the formulated LP, we enhance the time efficiency of solving LP through the geo-indistinguishability constraint reduction and the column generation algorithm. Using both simulation and real-world experiments, we demonstrate that our approach can reduce the quality loss of SC applications while protecting workers’ location privacy. 
    more » « less
  4. Fine-grained visual reasoning tasks in multi-agent environments such as event prediction, agent type identification, or missing data imputation are important for multiple applications (e.g., autonomous surveillance over sensor networks and subtasks for reinforcement learning (RL)). StarCraft II game replays encode intelligent (and adversarial) multi-agent behavior and could provide a testbed for these tasks; however, extracting simple and standardized representations for prototyping these tasks is laborious and hinders reproducibility. In contrast, MNIST and CIFAR10, despite their extreme simplicity, have enabled rapid prototyping and reproducibility of ML methods. Following the simplicity of these datasets, we construct a benchmark fine-grained multi-agent categorization dataset based on StarCraft II replays that exhibit complex multi-agent behaviors, while still being as easy to use as MNIST and CIFAR10. Specifically, we carefully summarize a window of 255 consecutive game states to create 3.6 million summary images from 60,000 replays, including all relevant metadata such as game outcome and player races. We develop three formats of decreasing complexity: Hyperspectral images that include one channel for every unit type (similar to multispectral geospatial images), RGB images that mimic CIFAR10, and grayscale images that mimic MNIST. We show how this dataset can be used for prototyping fine-grained multi-agent categorization methods. All datasets, code for extraction, and code for dataset loading can be found at https://starcraftdata.davidinouye.com/.</p> 
    more » « less
  5. Tor provides low-latency anonymous and uncensored network access against a local or network adversary. Due to the design choice to minimize traffic overhead (and increase the pool of potential users) Tor allows some information about the client's connections to leak. Attacks using (features extracted from) this information to infer the website a user visits are called Website Fingerprinting (WF) attacks. We develop a methodology and tools to measure the amount of leaked information about a website. We apply this tool to a comprehensive set of features extracted from a large set of websites and WF defense mechanisms, allowing us to make more fine-grained observations about WF attacks and defenses. 
    more » « less