Interfacial microenvironments critically define reaction pathways for electrocatalytic processes through a combination of electric field gradients and proton activity. Non-aqueous ionic liquid electrolytes have been shown to sustain enhanced interfacial electric field gradients at intermediate ion concentration regimes of around 1 M, creating local environments that promote CO2 electroreduction. Notably, water at low concentrations absorbed by non-aqueous electrolytes is usually assumed to be the proton donor for CO2 reduction. Consumption of protons causes proton donors to become more negative by one unit charge, which significantly modifies the local concentration of charged species and hence should strongly impact local electric fields. Yet, how the coupling between proton donation and changing interfacial electric fields influences electrocatalytic processes in non-aqueous electrolytes remains largely unexplored. In this work, we show that the high activity of 1,3-dialkylimidazolium ionic liquids for CO2 reduction in acetonitrilebased electrolytes stems from the ability to act as cationic proton donors that release neutral conjugate bases. Using in situ electrochemical surface-enhanced Raman spectroscopy, we find that the formation of neutral conjugate bases from imidazolium cations preserves local electric field strengths at electrode-electrolyte interfaces, providing a powerful strategy to maintain an active local microenvironment for CO2 reduction. In contrast, conditions where water behaves as the primary proton donor generates [OH]- anions as negative “co-ions” in the electric double layer, which weakens the interfacial electric field and significantly compromises the steady-state CO2 reduction activity. Our study highlights that electrochemical driving forces are highly sensitive to the charge state of both reactant and product species and highlights the fact that the generation of interfacial co-ions plays a key role in determining electrochemical driving forces.
more »
« less
Ab initio metadynamics calculations of dimethylamine for probing p K b variations in bulk vs. surface environments
The basicity constant, or p K b , is an intrinsic physical property of bases that gives a measure of its proton affinity in macroscopic environments. While the p K b is typically defined in reference to the bulk aqueous phase, several studies have suggested that this value can differ significantly at the air–water interface (which can have significant ramifications for particle surface chemistry and aerosol growth modeling). To provide mechanistic insight into surface proton affinity, we carried out ab initio metadynamics calculations to (1) explore the free-energy profile of dimethylamine and (2) provide reasonable estimates of the p K b value in different solvent environments. We find that the free-energy profiles obtained with our metadynamics calculations show a dramatic variation, with interfacial aqueous dimethylamine p K b values being significantly lower than in the bulk aqueous environment. Furthermore, our metadynamics calculations indicate that these variations are due to reduced hydrogen bonding at the air–water surface. Taken together, our quantum mechanical metadynamics calculations show that the reactivity of dimethylamine is surprisingly complex, leading to p K b variations that critically depend on the different atomic interactions occurring at the microscopic molecular level.
more »
« less
- Award ID(s):
- 1710691
- PAR ID:
- 10288026
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 22
- Issue:
- 45
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 26265 to 26277
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The hydrated electron, e–(aq), has attracted much attention as a central species in radiation chemistry. However, much less is known about e–(aq)at the water/air surface, despite its fundamental role in electron transfer processes at interfaces. Using time-resolved electronic sum-frequency generation spectroscopy, the electronic spectrum of e–(aq)at the water/air interface and its dynamics are measured here, following photo-oxidation of the phenoxide anion. The spectral maximum agrees with that for bulk e–(aq)and shows that the orbital density resides predominantly within the aqueous phase, in agreement with supporting calculations. In contrast, the chemistry of the interfacial hydrated electron differs from that in bulk water, with e–(aq)diffusing into the bulk and leaving the phenoxyl radical at the surface. Our work resolves long-standing questions about e–(aq)at the water/air interface and highlights its potential role in chemistry at the ubiquitous aqueous interface.more » « less
-
We are developing energy-efficient and reversible carbon capture and release (CCR) systems that mimic the Lys201 carbamylation reaction in the active site of ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO). The multiequilibria scenario ammonium ion Xa ⇌ amine Xb ⇌ carbamic acid Xc ⇌ carbamate Xd requires the presence of both free amine and CO2 for carbamylation and is affected by the pKa(Xa). Two fluorination strategies aimed at ammonium ion pKa depression and low pH carbamylation were analyzed with (2,2,2-trifluoroethyl)butylamine 2b and 2,2-difluoropropylamine 3b and compared to butylamine 1b. The determination of K1 and ΔG1 of the carbamylation reactions requires the solution of multiequilibria systems of equations based on initial conditions, 1H NMR measurements of carbamylation yields over a wide pH range, and knowledge of K2– K5 values. K2 and K3 describe carbonic acid acidity, and ammonium ion acidities K4 were measured experimentally. We calibrated carbamic acid acidities K5 based on the measured value K6 of aminocarbamic acid using isodesmic reactions. The proton exchange reactions were evaluated with ab initio computations at the APFD/6-311+G* level in combination with continuum solvation models and explicit solvation. The utilities of 1–3 will be discussed as they pertain to the development of fluorine-modified RuBisCO-mimetic reversible CCR systems.more » « less
-
We develop Mg/C/O/H ReaxFF parameter sets for two environments: an aqueous force field for magnesium ions in solution and an interfacial force field for minerals and mineral–water interfaces. Since magnesium is highly ionic, we choose to fix the magnesium charge and model its interaction with C/O/H through Coulomb, Lennard-Jones, and Buckingham potentials. We parameterize the forcefields against several crystal structures, including brucite, magnesite, magnesia, magnesium hydride, and magnesium carbide, as well as Mg 2+ water binding energies for the aqueous forcefield. Then, we test the forcefield for other magnesium-containing crystals, solvent separated and contact ion-pairs and single-molecule/multilayer water adsorption energies on mineral surfaces. We also apply the forcefield to the forsterite–water and brucite–water interface that contains a bicarbonate ion. We observe that a long-range proton transfer mechanism deprotonates the bicarbonate ion to carbonate at the interface. Free energy calculations show that carbonate can attach to the magnesium surface with an energy barrier of about 0.22 eV, consistent with the free energy required for aqueous Mg–CO 3 ion pairing. Also, the diffusion constant of the hydroxide ions in the water layers formed on the forsterite surface are shown to be anisotropic and heterogeneous. These findings can help explain the experimentally observed fast nucleation and growth of magnesite at low temperature at the mineral–water–CO 2 interface in water-poor conditions.more » « less
-
Metadynamics calculations of large chemical systems with ab initio methods are computationally prohibitive due to the extensive sampling required to simulate the large degrees of freedom in these systems. To address this computational bottleneck, we utilized a GPU-enhanced density functional tight binding (DFTB) approach on a massively parallelized cloud computing platform to efficiently calculate the thermodynamics and metadynamics of biochemical systems. To first validate our approach, we calculated the free-energy surfaces of alanine dipeptide and showed that our GPU-enhanced DFTB calculations qualitatively agree with computationally-intensive hybrid DFT benchmarks, whereas classical force fields give significant errors. Most importantly, we show that our GPU-accelerated DFTB calculations are significantly faster than previous approaches by up to two orders of magnitude. To further extend our GPU-enhanced DFTB approach, we also carried out a 10 ns metadynamics simulation of remdesivir, which is prohibitively out of reach for routine DFT-based metadynamics calculations. We find that the free-energy surfaces of remdesivir obtained from DFTB and classical force fields differ significantly, where the latter overestimates the internal energy contribution of high free-energy states. Taken together, our benchmark tests, analyses, and extensions to large biochemical systems highlight the use of GPU-enhanced DFTB simulations for efficiently predicting the free-energy surfaces/thermodynamics of large biochemical systems.more » « less