skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Application of remote sensing precipitation data and the CONNECT algorithm to investigate spatiotemporal variations of heavy precipitation: Case study of major floods across Iran (Spring 2019)
Award ID(s):
1735040
PAR ID:
10288121
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Hydrology
Volume:
600
Issue:
C
ISSN:
0022-1694
Page Range / eLocation ID:
126569
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In terrestrial ecosystems, climate change forecasts of increased frequencies and magnitudes of wet and dry precipitation anomalies are expected to shift precipitation–net primary productivity (PPT–NPP) relationships from linear to nonlinear. Less understood, however, is how future changes in the duration of PPT anomalies will alter PPT–NPP relationships. A review of the literature shows strong potential for the duration of wet and dry PPT anomalies to impact NPP and to interact with the magnitude of anomalies. Within semi‐arid and mesic grassland ecosystems, PPT gradient experiments indicate that short‐duration (1 year) PPT anomalies are often insufficient to drive nonlinear aboveground NPP responses. But long‐term studies, within desert to forest ecosystems, demonstrate how multi‐year PPT anomalies may result in increasing impacts on NPP through time, and thus alter PPT–NPP relationships. We present a conceptual model detailing how NPP responses to PPT anomalies may amplify with the duration of an event, how responses may vary in xeric vs. mesic ecosystems, and how these differences are most likely due to demographic mechanisms. Experiments that can unravel the independent and interactive impacts of the magnitude and duration of wet and dry PPT anomalies are needed, with multi‐site long‐term PPT gradient experiments particularly well‐suited for this task. 
    more » « less
  2. Aerosols are important modulators of the precipitation-generating process, with their concentrations potentially affecting the precipitation process in extreme events. Existing literature suggests that, through microphysical processes, additional aerosols lead to a larger number of smaller cloud droplets, which eventually redistributes the latent heat and the precipitation process. This research addresses the question of how sensitive the spatial and temporal patterns of heavy precipitation events are to aerosol concentration. National Centers for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS) final (FNL) data were used as input to the Weather Research and Forecasting (WRF) model, to simulate the case study of the catastrophic 2016 flood in Louisiana, USA, for three aerosol loading scenarios: virtually clean, average, and very dirty, corresponding to 0.1×, 1×, and 10× the climatological aerosol concentration. Overall, for the extreme precipitation event in Baton Rouge, Louisiana, in August 2016, increasing aerosol concentrations were associated with 1) a shifted peak precipitation period; 2) a more intense and extreme precipitation event in a more confined area; 3) greater maximum precipitation. Results are important in improving forecast models of extreme precipitation events, thereby further protecting life and property, and more comprehensively understanding the role of aerosols in heavy precipitation events. 
    more » « less
  3. Abstract Mesoscale convective systems (MCSs) are a substantial source of precipitation in the eastern U.S. and may be sensitive to regional climatic change. We use a suite of convection-permitting climate simulations to examine possible changes in MCS precipitation. Specifically, annual and regional totals of MCS and non-MCS precipitation generated during a retrospective simulation are compared to end-of-21st-century simulations based on intermediate and extreme climate change scenarios. Both scenarios produce more MCS precipitation and less non-MCS precipitation, thus significantly increasing the proportion of precipitation associated with MCSs across the U.S. 
    more » « less