skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Precipitation–productivity relationships and the duration of precipitation anomalies: An underappreciated dimension of climate change
Abstract In terrestrial ecosystems, climate change forecasts of increased frequencies and magnitudes of wet and dry precipitation anomalies are expected to shift precipitation–net primary productivity (PPT–NPP) relationships from linear to nonlinear. Less understood, however, is how future changes in the duration of PPT anomalies will alter PPT–NPP relationships. A review of the literature shows strong potential for the duration of wet and dry PPT anomalies to impact NPP and to interact with the magnitude of anomalies. Within semi‐arid and mesic grassland ecosystems, PPT gradient experiments indicate that short‐duration (1 year) PPT anomalies are often insufficient to drive nonlinear aboveground NPP responses. But long‐term studies, within desert to forest ecosystems, demonstrate how multi‐year PPT anomalies may result in increasing impacts on NPP through time, and thus alter PPT–NPP relationships. We present a conceptual model detailing how NPP responses to PPT anomalies may amplify with the duration of an event, how responses may vary in xeric vs. mesic ecosystems, and how these differences are most likely due to demographic mechanisms. Experiments that can unravel the independent and interactive impacts of the magnitude and duration of wet and dry PPT anomalies are needed, with multi‐site long‐term PPT gradient experiments particularly well‐suited for this task.  more » « less
Award ID(s):
2025849
PAR ID:
10453544
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
27
Issue:
6
ISSN:
1354-1013
Page Range / eLocation ID:
p. 1127-1140
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding the relationship between precipitation (PPT) and aboveground net primary productivity (ANPP) is essential for modeling the global carbon cycle. Across grassland to forest gradients, the PPT‐ANPP relationship is well defined and nonlinear. Temporal patterns within a site over time are more variable and nearly always linear. Linear relationships, however, are inconsistent with positive asymmetry, where increases in ANPP during wet years exceed declines in dry years. The double asymmetry model predicts that concave‐down nonlinearities will occur when extreme high and low PPT years are included in a time series. We tested this prediction using long‐term observational ANPP data along with rainfall manipulation experiments. By combining observational records with experimental treatments, including drought, water addition, and nitrogen addition, we found some support for the double asymmetry model. However, the response under high precipitation coupled with nitrogen addition was concave‐up, not down. By experimentally extending the range of monsoon precipitation, we found a weak but significant, nonlinear PPT‐ANPP relationship, but only when nutrient limitation was alleviated. Our results demonstrate that multiple interacting factors govern the PPT‐ANPP relationship within a site over time, challenging our ability to predict how ANPP will respond to changes in precipitation in the future. 
    more » « less
  2. Abstract Dryland vegetation is influenced by biotic and abiotic land surface template (LST) conditions and precipitation (PPT), such that enhanced vegetation responses to periods of high PPT may be shaped by multiple factors. High PPT stochasticity in the Chihuahuan Desert suggests that enhanced responses across broad geographic areas are improbable. Yet, multiyear wet periods may homogenize PPT patterns, interact with favorable LST conditions, and in this way produce enhanced responses. In contrast, periods containing multiple extreme high PPT pulse events could overwhelm LST influences, suggesting a divergence in how climate change could influence vegetation by altering PPT periods. Using a suite of stacked remote sensing and LST datasets from the 1980s to the present, we evaluated PPT‐LST‐Vegetation relationships across this region and tested the hypothesis that enhanced vegetation responses would be initiated by high PPT, but that LST favorability would underlie response magnitude, producing geographic differences between wet periods. We focused on two multiyear wet periods; one of above average, regionally distributed PPT (1990–1993) and a second with locally distributed PPT that contained two extreme wet pulses (2006–2008). 1990–1993 had regional vegetation responses that were correlated with soil properties. 2006–2008 had higher vegetation responses over a smaller area that were correlated primarily with PPT and secondarily to soil properties. Within the overlapping PPT area of both periods, enhanced vegetation responses occurred in similar locations. Thus, LST favorability underlied the geographic pattern of vegetation responses, whereas PPT initiated the response and controlled response area and maximum response magnitude. Multiyear periods provide foresight on the differing impacts that directional changes in mean climate and changes in extreme PPT pulses could have in drylands. Our study shows that future vegetation responses during wet periods will be tied to LST favorability, yet will be shaped by the pattern and magnitude of multiyear PPT events. 
    more » « less
  3. Abstract Climate change is causing marked shifts to historic environmental regimes, including increases in precipitation events (droughts and highly wet periods). Relative to droughts, the impacts of wet events have received less attention, despite heavy rainfall events increasing over the past century. Further, impacts of wet and dry events are often evaluated independently; yet, to persist and maintain their ecosystem functions, plant communities must be resilient to both precipitation events. This is particularly critical because while community properties can modulate the resilience (resistance, recovery, and invariability) of ecosystem functions to precipitation events, community properties can also respond to precipitation events. As a result, community responses to wet and dry years may impact the community's resilience to future events.Using two decades (2000–2020) of annual net primary productivity data from early successional grassland communities, we evaluated the plant community properties regulating primary productivity resistance and recovery to contrasting precipitation events and invariability (i.e. long‐term stability). We then explored how resilience‐modulating community properties responded to precipitation.We found that community properties—specifically, evenness, dominant species (Solidago altissima) relative abundance, and species richness—strongly regulate productivity resistance to drought and predict productivity invariability and tended to promote resistance to wet years. These community properties also responded to both wet and dry precipitation extremes and exhibited lagged responses that lasted into the next growing season. We infer that these connections between precipitation events, community properties, and resilience may lead to feedbacks impacting a plant community's resilience to subsequent precipitation events.Synthesis. By exploring the impacts of both drought and wet extremes, our work uncovers how precipitation events, which may not necessarily impact productivity directly, could still cryptically influence resilience via shifts in resilience‐promoting properties of the plant community. We conclude that these precipitation event‐driven community shifts may feedback to impact long‐term productivity resilience under climate change. 
    more » « less
  4. Abstract Background Precipitation plays an important role in crop production and soil greenhouse gas emissions. However, how crop yield and soil nitrous oxide (N 2 O) emission respond to precipitation change, particularly with different background precipitations (dry, normal, and wet years), has not been well investigated. In this study, we examined the impacts of precipitation changes on corn yield and soil N 2 O emission using a long-term (1981–2020, 40 years) climate dataset as well as seven manipulated precipitation treatments with different background precipitations using the DeNitrification-DeComposition (DNDC) model. Results Results showed large variations of corn yield and precipitation but small variation of soil N 2 O emission among 40 years. Both corn yield and soil N 2 O emission showed near linear relationships with precipitation based on the long-term precipitation data, but with different response patters of corn yield and soil N 2 O emission to precipitation manipulations. Corn yield showed a positive linear response to precipitation manipulations in the dry year, but no response to increases in precipitation in the normal year, and a trend of decrease in the wet year. The extreme drought treatments reduced corn yield sharply in both normal and wet years. In contrast, soil N 2 O emission mostly responded linearly to precipitation manipulations. Decreases in precipitation in the dry year reduced more soil N 2 O emission than those in the normal and wet years, while increases in precipitation increased more soil N 2 O emission in the normal and wet years than in the dry year. Conclusions This study revealed different response patterns of corn yield and soil N 2 O emission to precipitation and highlights that mitigation strategy for soil N 2 O emission reduction should consider different background climate conditions. 
    more » « less
  5. Abstract Individually, extreme humid heat and extreme precipitation events can trigger widespread socioeconomic impacts which disproportionately affect vulnerable populations. These impacts might become greater when both events occur in close temporal proximity, for example if emergency responses to heat stress casualties are hindered by flooded roads. Improved understanding of the probabilities and physical mechanisms associated with these events’ temporal compounding might uncover causal interrelationships offering avenues for improving early warning systems and projecting changes in a warmer climate. We explore sequential humid heat and rainfall relationships during the local summer season, identifying two classes of temporal relationships. We find that high wet bulb temperature (WBT) anomalies in most mid- to high-latitude and tropical regions are preceded by anomalously low precipitation. In contrast, hot and dry subtropical regions generally experience elevated WBTs during and, to a somewhat lesser extent, before extreme precipitation events. High WBT events are followed by positive precipitation anomalies in many land regions. 
    more » « less