Volvocine green algae are a model for understanding the evolution of mating types and sexes. They are facultatively sexual, with gametic differentiation occurring in response to nitrogen starvation (-N) in most genera and to sex inducer hormone in Volvox . The conserved RWP-RK family transcription factor (TF) MID is encoded by the minus mating-type locus or male sex-determining region of heterothallic volvocine species and dominantly determines minus or male gametic differentiation. However, the factor(s) responsible for establishing the default plus or female differentiation programs have remained elusive. We performed a phylo-transcriptomic screen for autosomal RWP-RK TFs induced during gametogenesis in unicellular isogamous Chlamydomonas reinhardtii (Chlamydomonas) and in multicellular oogamous Volvox carteri (Volvox) and identified a single conserved ortho-group we named Volvocine Sex Regulator 1 (VSR1). Chlamydomonas vsr1 mutants of either mating type failed to mate and could not induce expression of key mating-type-specific genes. Similarly, Volvox vsr1 mutants in either sex could initiate sexual embryogenesis, but the presumptive eggs or androgonidia (sperm packet precursors) were infertile and unable to express key sex-specific genes. Yeast two-hybrid assays identified a conserved domain in VSR1 capable of self-interaction or interaction with the conserved N terminal domain of MID. In vivo coimmunoprecipitation experiments demonstrated association of VSR1 and MID in both Chlamydomonas and Volvox. These data support a new model for volvocine sexual differentiation where VSR1 homodimers activate expression of plus /female gamete-specific-genes, but when MID is present, MID-VSR1 heterodimers are preferentially formed and activate minus /male gamete-specific-genes.
more »
« less
Three genomes in the algal genus Volvox reveal the fate of a haploid sex-determining region after a transition to homothallism
Transitions between separate sexes (dioecy) and other mating systems are common across eukaryotes. Here, we study a change in a haploid dioecious green algal species with male- and female-determining chromosomes (U and V). The genus Volvox is an oogamous (with large, immotile female gametes and small, motile male gametes) and includes both heterothallic species (with distinct male and female genotypes, associated with a mating-type system that prevents fusion of gametes of the same sex) and homothallic species (bisexual, with the ability to self-fertilize). We date the origin of an expanded sex-determining region (SDR) in Volvox to at least 75 Mya, suggesting that homothallism represents a breakdown of dioecy (heterothallism). We investigated the involvement of the SDR of the U and V chromosomes in this transition. Using de novo whole-genome sequences, we identified a heteromorphic SDR of ca 1 Mbp in male and female genotypes of the heterothallic species Volvox reticuliferus and a homologous region (SDLR) in the closely related homothallic species Volvox africanus , which retained several different hallmark features of an SDR. The V. africanus SDLR includes a large region resembling the female SDR of the presumptive heterothallic ancestor, whereas most genes from the male SDR are absent. However, we found a multicopy array of the male-determining gene, MID , in a different genomic location from the SDLR. Thus, in V. africanus , an ancestrally female genotype may have acquired MID and thereby gained male traits.
more »
« less
- Award ID(s):
- 1755430
- PAR ID:
- 10288145
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 21
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- e2100712118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract It remains a major challenge to identify the genes and mutations that lead to plant sexual differentiation. Here, we study the structure and evolution of the sex-determining region (SDR) inVitisspecies. We report an improved, chromosome-scale Cabernet Sauvignon genome sequence and the phased assembly of nine wild and cultivated grape genomes. By resolving twentyVitisSDR haplotypes, we compare male, female, and hermaphrodite haplotype structures and identify sex-linked regions. Coupled with gene expression data, we identify a candidate male-sterility mutation in theVviINP1gene and potential female-sterility function associated with the transcription factorVviYABBY3. Our data suggest that dioecy has been lost during domestication through a rare recombination event between male and female haplotypes. This work significantly advances the understanding of the genetic basis of sex determination inVitisand provides the information necessary to rapidly identify sex types in grape breeding programs.more » « less
-
Teleosts are important models to study sex chromosomes and sex-determining (SD) genes because they present a variety of sex determination systems. Here, we used Nanopore and Hi-C technologies to generate a high-contiguity chromosome-level genome assembly of a YY southern catfish ( Silurus meridionalis ). The assembly is 750.0 Mb long, with contig N50 of 15.96 Mb and scaffold N50 of 27.22 Mb. We also sequenced and assembled an XY male genome with a size of 727.2 Mb and contig N50 of 13.69 Mb. We identified a candidate SD gene through comparisons to our previous assembly of an XX individual. By resequencing male and female pools, we characterized a 2.38 Mb sex-determining region (SDR) on Chr24. Analysis of read coverage and comparison of the X and Y chromosome sequences showed a Y specific insertion (approx. 500 kb) in the SDR which contained a male-specific duplicate of amhr2 (named amhr2y ). amhr2y and amhr2 shared high-nucleotide identity (81.0%) in the coding region but extremely low identity in the promotor and intron regions. The exclusive expression in the male gonadal primordium and loss-of-function inducing male to female sex reversal confirmed the role of amhr2y in male sex determination. Our study provides a new example of amhr2 as the SD gene in fish and sheds light on the convergent evolution of the duplication of AMH/AMHR2 pathway members underlying the evolution of sex determination in different fish lineages.more » « less
-
Hermaphroditic (perfect) flowers were a key trait in grapevine domestication, enabling a drastic increase in yields due to the efficiency of self-pollination in the domesticated grapevine ( Vitis vinifera L. ssp. vinifera ). In contrast, all extant wild Vitis species are dioecious, each plant having only male or female flowers. In this study, we identified the male (M) and female (f) haplotypes of the sex-determining region (SDR) in the wild grapevine species V. cinerea and confirmed the boundaries of the SDR. We also demonstrated that the SDR and its boundaries are precisely conserved across the Vitis genus using shotgun resequencing data of 556 wild and domesticated accessions from North America, East Asia, and Europe. A high linkage disequilibrium was found at the SDR in all wild grape species, while different recombination signatures were observed along the hermaphrodite (H) haplotype of 363 cultivated accessions, revealing two distinct H haplotypes, named H1 and H2. To further examine the H2 haplotype, we sequenced the genome of two grapevine cultivars, 'Riesling' and 'Chardonnay'. By reconstructing the first two H2 haplotypes, we estimated the divergence time between H1 and H2 haplotypes at ∼6 million years ago, which predates the domestication of grapevine (∼8,000 y ago). Our findings emphasize the important role of recombination suppression in maintaining dioecy in wild grape species and lend additional support to the hypothesis that at least two independent recombination events led to the reversion to hermaphroditism in grapevine.more » « less
-
Abstract Sex determination, the developmental process by which sexually dimorphic phenotypes are established, evolves fast. Evolutionary turnover in a sex determination pathway may occur via selection on alleles that are genetically linked to a new master sex determining locus on a newly formed proto‐sex chromosome. Species with polygenic sex determination, in which master regulatory genes are found on multiple different proto‐sex chromosomes, are informative models to study the evolution of sex determination and sex chromosomes. House flies are such a model system, with male determining loci possible on all six chromosomes and a female‐determiner on one of the chromosomes as well. The two most common male‐determining proto‐Y chromosomes form latitudinal clines on multiple continents, suggesting that temperature variation is an important selection pressure responsible for maintaining polygenic sex determination in this species. Temperature‐dependent fitness effects could be manifested through temperature‐dependent gene expression differences across proto‐Y chromosome genotypes. These gene expression differences may be the result ofcisregulatory variants that affect the expression of genes on the proto‐sex chromosomes, ortranseffects of the proto‐Y chromosomes on genes elswhere in the genome. We used RNA‐seq to identify genes whose expression depends on proto‐Y chromosome genotype and temperature in adult male house flies. We found no evidence for ecologically meaningful temperature‐dependent expression differences of sex determining genes between male genotypes, but we were probably not sampling an appropriate developmental time‐point to identify such effects. In contrast, we identified many other genes whose expression depends on the interaction between proto‐Y chromosome genotype and temperature, including genes that encode proteins involved in reproduction, metabolism, lifespan, stress response, and immunity. Notably, genes with genotype‐by‐temperature interactions on expression were not enriched on the proto‐sex chromosomes. Moreover, there was no evidence that temperature‐dependent expression is driven by chromosome‐widecis‐regulatory divergence between the proto‐Y and proto‐X alleles. Therefore, if temperature‐dependent gene expression is responsible for differences in phenotypes and fitness of proto‐Y genotypes across house fly populations, these effects are driven by a small number of temperature‐dependent alleles on the proto‐Y chromosomes that may havetranseffects on the expression of genes on other chromosomes.more » « less
An official website of the United States government

