skip to main content


Title: Computational Discovery of New 2D Materials Using Deep Learning Generative Models
Two-dimensional (2D) materials have emerged as promising functional materials with many applications such as semiconductors and photovoltaics because of their unique optoelectronic properties. Although several thousand 2D materials have been screened in existing materials databases, discovering new 2D materials remains challenging. Herein, we propose a deep learning generative model for composition generation combined with a random forest-based 2D materials classifier to discover new hypothetical 2D materials. Furthermore, a template-based element substitution structure prediction approach is developed to predict the crystal structures of a subset of the newly predicted hypothetical formulas, which allows us to confirm their structure stability using DFT calculations. So far, we have discovered 267 489 new potential 2D materials compositions, where 1485 probability scores are more then 0.95. Among them, we have predicted 101 crystal structures and confirmed 92 2D/layered materials by DFT formation energy calculation. Our results show that generative machine learning models provide an effective way to explore the vast chemical design space for new 2D materials discovery.  more » « less
Award ID(s):
1940099 1905775
NSF-PAR ID:
10288156
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACS Applied Materials & Interfaces
ISSN:
1944-8244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    High‐throughput screening has become one of the major strategies for the discovery of novel functional materials. However, its effectiveness is severely limited by the lack of sufficient and diverse materials in current materials repositories such as the open quantum materials database (OQMD). Recent progress in deep learning have enabled generative strategies that learn implicit chemical rules for creating hypothetical materials with new compositions and structures. However, current materials generative models have difficulty in generating structurally diverse, chemically valid, and stable materials. Here we propose CubicGAN, a generative adversarial network (GAN) based deep neural network model for large scale generative design of novel cubic materials. When trained on 375 749 ternary materials from the OQMD database, the authors show that the model is able to not only rediscover most of the currently known cubic materials but also generate hypothetical materials of new structure prototypes. A total of 506 such materials have been verified by phonon dispersion calculation. Considering the importance of cubic materials in wide applications such as solar panels, the GAN model provides a promising approach to significantly expand existing materials repositories, enabling the discovery of new functional materials via screening. The new crystal structures discovered are freely accessible atwww.carolinamatdb.org.

     
    more » « less
  2. Two‐dimensional (2D) materials offer great potential in various fields like superconductivity, quantum systems, and topological materials. However, designing them systematically remains challenging due to the limited pool of fewer than 100 experimentally synthesized 2D materials. Recent advancements in deep learning, data mining, and density functional theory (DFT) calculations have paved the way for exploring new 2D material candidates. Herein, a generative material design pipeline known as the material transformer generator (MTG) is proposed. MTG leverages two distinct 2D material composition generators, both trained using self‐learning neural language models rooted in transformers, with and without transfer learning. These models generate numerous potential 2D compositions, which are plugged into established templates for known 2D materials to predict their crystal structures. To ensure stability, DFT computations assess their thermodynamic stability based on energy‐above‐hull and formation energy metrics. MTG has found four new DFT‐validated stable 2D materials: NiCl4, IrSBr, CuBr3, and CoBrCl, all with zero energy‐above‐hull values that indicate thermodynamic stability. Additionally, GaBrO and NbBrCl3are found with energy‐above‐hull values below 0.05 eV. CuBr3and GaBrO exhibit dynamic stability, confirmed by phonon dispersion analysis. In summary, the MTG pipeline shows significant potential for discovering new 2D and functional materials.

     
    more » « less
  3. Abstract

    Discovering new materials is a challenging task in materials science crucial to the progress of human society. Conventional approaches based on experiments and simulations are labor-intensive or costly with success heavily depending on experts’ heuristic knowledge. Here, we propose a deep learning based Physics Guided Crystal Generative Model (PGCGM) for efficient crystal material design with high structural diversity and symmetry. Our model increases the generation validity by more than 700% compared to FTCP, one of the latest structure generators and by more than 45% compared to our previous CubicGAN model. Density Functional Theory (DFT) calculations are used to validate the generated structures with 1869 materials out of 2000 are successfully optimized and deposited into the Carolina Materials Databasewww.carolinamatdb.org, of which 39.6% have negative formation energy and 5.3% have energy-above-hull less than 0.25 eV/atom, indicating their thermodynamic stability and potential synthesizability.

     
    more » « less
  4. Among the diversity of new materials, two-dimensional crystal structures have been attracting significant attention from the broad scientific community due to their promising applications in nanoscience. In this study we predict a novel two-dimensional ferromagnetic boron material, which has been exhaustively studied with DFT methods. The relaxed structure of the 2D-B 6 monolayer consists of slightly flattened octahedral units connected with 2c-2e B–B σ-bonds. The calculated phonon spectrum and ab initio molecular dynamics simulations reveal the thermal and dynamical stability of the designed material. The calculation of the mechanical properties indicate a relatively high Young's modulus of 149 N m −1 . Moreover, the electronic structure indicates the metallic nature of the 2D-B 6 sheets, whereas the magnetic moment per unit cell is found to be 1.59 μ B . The magnetism in the 2D-B 6 monolayer can be described by the presence of two unpaired delocalized bonding elements inside every distorted octahedron. Interestingly, the nature of the magnetism does not lie in the presence of half-occupied atomic orbitals, as was shown for previously studied magnetic materials based on boron. We hope that our predictions will provide promising new ideas for the further fabrication of boron-based two-dimensional magnetic materials. 
    more » « less
  5. Abstract

    Oxidation states (OS) are the charges on atoms due to electrons gained or lost upon applying an ionic approximation to their bonds. As a fundamental property, OS has been widely used in charge‐neutrality verification, crystal structure determination, and reaction estimation. Currently, only heuristic rules exist for guessing the oxidation states of a given compound with many exceptions. Recent work has developed machine learning models based on heuristic structural features for predicting the oxidation states of metal ions. However, composition‐based oxidation state prediction still remains elusive so far, which has significant implications for the discovery of new materials for which the structures have not been determined. This work proposes a novel deep learning‐based BERT transformer language model BERTOS for predicting the oxidation states for all elements of inorganic compounds given only their chemical composition. This model achieves 96.82% accuracy for all‐element oxidation states prediction benchmarked on the cleaned ICSD dataset and achieves 97.61% accuracy for oxide materials. It is also demonstrated how it can be used to conduct large‐scale screening of hypothetical material compositions for materials discovery.

     
    more » « less